光电工程, 2017, 44 (12): 1160, 网络出版: 2018-01-17  

激光制备超疏水表面研究进展

Research progress in superhydrophobic surfaces fabricated by laser
杨焕 1,2曹宇 2李峰平 1,*薛伟 1,2
作者单位
1 温州大学激光与光电智能制造研究院,浙江 温州 325035
2 温州大学机电工程学院,浙江省激光加工机器人重点实验室,浙江 温州 325035
引用该论文

杨焕, 曹宇, 李峰平, 薛伟. 激光制备超疏水表面研究进展[J]. 光电工程, 2017, 44(12): 1160.

Huan Yang, Yu Cao, Fengping Li, Wei Xue. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electronic Engineering, 2017, 44(12): 1160.

参考文献

[1] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1–8.

[2] 周文木. 生物表面海洋防污性能研究[D]. 长沙: 国防科学技术大学, 2010.

    Zhou Wenmu. Research on marine antifouling performances of biologic surface[D]. Changsha: National University of De-fense Technology, 2010.

[3] Koch K, Bhushan B, Barthlott W. Diversity of structure, morphology and wetting of plant surfaces[J]. Soft Matter, 2008, 4(10): 1943–1963.

[4] Duparré A, Flemming M, Steinert J, et al. Optical coatings with enhanced roughness for ultrahydrophobic, low-scatter ap-plications[J]. Applied Optics, 2002, 41(16): 3294–3298.

[5] Zhang H, Lamb R, Lewis J. Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour[J]. Science and Technology of Advanced Materials, 2005, 6(3-4): 236–239.

[6] Li Shenghai, Xie Haibo, Zhang Suobo, et al. Facile trans-formation of hydrophilic cellulose into superhydrophobic cel-lulose[J]. Chemical Communications, 2007, 46: 4857–4859.

[7] Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces[J]. Langmuir, 1996, 12(9): 2125–2127.

[8] Shibuichi S, Onda N, Satoh N, et al. Super water-repellent surfaces resulting from fractal structure[J]. Journal of Physical Chemistry, 1996, 100(50): 19512–19517.

[9] Chen Wei, Fadeev A Y, Hsieh M C, et al. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples[J]. Langmuir, 1999, 15(10): 3395–3399.

[10] Oner D, McCarthy T J. Ultrahydrophobic surfaces. effects of topography length scales on wettability[J]. Langmuir, 2000, 16(20): 7777–7782.

[11] Matsumoto Y, Ishida M. The property of plasma-polymerized fluorocarbon film in relation to CH4/C4F8 ratio and substrate temperature[J]. Sensors and Actuators A: Physical, 2000, 83(1–3): 179–185.

[12] Wu Y, Sugimura H, Inoue Y, et al. Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD[J]. Chemical Vapor Deposition, 2002, 8(2): 47–50.

[13] Takeda K, Sasaki M, Kieda N, et al. Preparation of transparent super-hydrophobic polymer film with brightness enhancement property[J]. Journal of Materials Science Letters, 2001, 20(23): 2131–2133.

[14] Shibuichi S, Yamamoto T, Onda T, et al. Super water- and oil-repellent surfaces resulting from fractal structure[J]. Journal of Colloid and Interface Science, 1998, 208(1): 287–294.

[15] Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhy-drophobic surfaces[J]. Langmuir, 2000, 16(13): 5754–5760.

[16] Nakajima A, Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic films with visible light transmission[J]. Thin Solid Films, 2000, 376(1–2): 140–143.

[17] Tadanaga K, Morinaga J, Minami T. Formation of superhy-drophobic-superhydrophilic pattern on flowerlike alumina thin film by the sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2000, 19(1–3): 211–214.

[18] Li Shuhong, Li Huanjun, Wang Xianbao, et al. Su-per-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes[J]. Journal of Physical Chemistry B, 2002, 106(36): 9274–9276.

[19] Veeramasuneni S, Drelich J, Miller J D, et al. Hydrophobicity of ion-plated PTFE coatings[J]. Progress in Organic Coatings, 1997, 31(3): 265–270.

[20] Miller J D, Veeramasuneni S, Drelich J, et al. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films[J]. Polymer Engineering & Science, 1996, 36(14): 1849–1855.

[21] Genzer J, Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled mono-layers[J]. Science, 2000, 290(5499): 2130–2133.

[22] Nakajima A, Saiki C, Hashimoto K, et al. Processing of roughened silica film by coagulated colloidal silica for su-per-hydrophobic coating[J]. Journal of Materials Science Letters, 2001, 20(21): 1975–1977.

[23] Erbil H Y, Demirel A L, Avci Y, et al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science, 2003, 299(5611): 1377–1380.

[24] 钱柏太. 金属基体上超疏水表面的制备研究[D]. 大连: 大连理工大学, 2006.

    Qian Baitai. Study on fabrication of superhydrophobic sur-faces on metallic substrates[D]. Dalian: Dalian University of Technology, 2006.

[25] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展, 2003, 23(12): 1258–1264.

    Jiang Lei. Nanostructured materials with superhydrophobic surface——from nature to biomimesis[J]. Chemical Industry and Engineering Progress, 2003, 23(12): 1258–1264.

[26] 颜肖慈, 罗明道. 界面化学[M]. 北京: 化学工业出版社, 2005.

    Yan Xiaoci, Luo Mingdao. Surface Chemistry[M]. Beijing: Chemical Industry Press, 2005.

[27] 滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009.

    Teng Xinrong. Surface physical chemistry[M]. Beijing: Chemical Technology Press, 2009.

[28] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65–87.

[29] Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention [J]. Journal of Colloid and Interface Science, 1962, 17: 309– 324.

[30] Wenzel P N. Resistance of solid surfaces to wetting by wa-ter[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988–994.

[31] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546–551.

[32] Quéré D, Lafuma A, Bico J. Slippy and sticky microtextured solids[J]. Nanotechnology, 2003, 14(10): 1109–1112.

[33] Peters A M, Pirat C, Sbragaglia M, et al. Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity[J]. The European Physical Journal E, 2009, 29(4): 391–397.

[34] Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on CF3 alignment[J]. Langmuir, 1999, 15(13): 4321–4323.

[35] Blossey R. Self-cleaning surfaces-virtual realities[J]. Nature Materials, 2003, 2(5): 301–306.

[36] He Haidong, Qu Ningsong, Zeng Yongbin. Lotus-leaf-like microstructures on tungsten surface induced by one-step nanosecond laser irradiation[J]. Surface and Coatings Technology, 2016, 307: 898–907.

[37] Emelyanenko A M, Shagieva F M, Domantovsky A G, et al. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion[J]. Applied Surface Sci-ence, 2015, 332: 513–517.

[38] Tang T, Shim V, Pan Z Y, et al. Laser ablation of metal sub-strates for super-hydrophobic effect[J]. Journal of Laser Mi-cro/Nanoengineering, 2011, 6(1): 6–9.

[39] Chun D M, Ngo C V, Lee K M. Fast fabrication of superhy-drophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J]. CIRP Annals, 2016, 65(1): 519– 522.

[40] Jagdheesh R, Pathiraj B, Karatay E, et al. Laser-induced nanoscale superhydrophobic structures on metal surfaces[J]. Langmuir, 2011, 27(13): 8464–8469.

[41] Long Jiangyou, Zhong Minlin, Zhang Hongjun, et al. Su-perhydrophilicity to superhydrophobicity transition of pico-second laser microstructured aluminum in ambient air[J]. Journal of Colloid and Interface Science, 2015, 441: 1–9.

[42] 林澄. 皮秒激光制备大面积金属类荷叶结构及其超疏水压印研究[D]. 北京: 清华大学, 2014.

    Lin Cheng. Large-area Metal lotus-like structures fabricated by picosecond laser for superhydrophobic surface replica-tion[D]. Beijing: Tsinghua University, 2014.

[43] Jagdheesh R. Fabrication of a superhydrophobic Al2O3sur-face using picosecond laser pulses[J]. Langmuir, 2014, 30(40): 12067–12073.

[44] Baldacchini T, Carey J E, Zhou Ming, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917–4919.

[45] Yong Jiale, Yang Qing, Chen Feng, et al. Stable superhy-drophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 2013, 111(1): 243–249.

[46] Zhang Dongshi, Chen Feng, Fang Guoping, et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Mi-croengineering, 2010, 20(7): 075029.

[47] Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20(21): 4049–4054.

[48] Yoon T O, Shin H J, Jeoung S C, et al. Formation of super-hydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification[J]. Optics Express, 2008, 16(17): 12715– 12725.

[49] Moradi S, Kamal S, Englezos P, et al. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 2013, 24(41): 415302.

杨焕, 曹宇, 李峰平, 薛伟. 激光制备超疏水表面研究进展[J]. 光电工程, 2017, 44(12): 1160. Huan Yang, Yu Cao, Fengping Li, Wei Xue. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electronic Engineering, 2017, 44(12): 1160.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!