中国激光, 2006, 33 (1): 57, 网络出版: 2006-04-20   

光子晶体光纤非线性光学研究新进展 下载: 3452次

Progress in Nonlinear Optics with Photonic Crystal Fibers
作者单位
天津大学精密仪器与光电子工程学院超快激光研究室 光电信息技术科学教育部重点实验室, 天津 300072
引用该论文

王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57.

王清月, 胡明列, 柴路. Progress in Nonlinear Optics with Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2006, 33(1): 57.

参考文献

[1] . Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059-2062.

[2] . John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486-2489.

[3] . C. Knight. T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547-1549.

[4] . A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett., 1997, 22(13): 961-963.

[5] . C. Knight, J. Broeng, T. A. Birks et al.. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476-1478.

[6] . C. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847-851.

[7] . Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.

[8] . C. Knight, J. Arriaga, T. A. Birks et al.. Anomalous dispersion in photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2000, 12(7): 807-809.

[9] Yanfeng Li, Bowen Liu, Zihan Wang et al.. Influence on photonic crystal fiber dispersion of the size of air holes in different rings within the cladding [J]. Chin. Opt. Lett., 2004, 2(2):75~77

[10] . G. R. Broderick, T. M. Monro, P. J. Bennett et al.. Nonlinearity in holey optical fibers: measurement and future opportunities[J]. Opt. Lett., 1999, 24(20): 1395-1397.

[11] . P. Hansen, J. Broeng, S. E. B. Libori et al.. Highly birefringent index-guiding photonic crystal fibers[J]. IEEE Photon. Technol. Lett., 2001, 13(6): 588-590.

[12] . Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth et al.. Highly birefringent photonic crystal fibers[J]. Opt. Lett., 2000, 25(18): 1325-1327.

[13] Lou Shuqin, Wang Zhi, Ren Guobin et al.. Highly birefringent index guiding photonic crystal fibers [J]. Acta Optica Sinica, 2004, 24(10):1310~1315
娄淑琴,王智, 任国斌 等. 折射率导模高双折射光子晶体光纤[J]. 光学学报, 2004, 24(10):1310~1315

[14] D. A. Akimov, M. Schmitt, R. Maksimenka et al.. Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes [J]. Appl. Phys. B, 2003, 77(2-3):299~305

[15] . L. Hu, C. Y. Wang, Y. F. Li et al.. Multiplex frequency conversion of unamplified 30-fs Ti:sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber[J]. Opt. Express, 2004, 12(25): 6129-6134.

[16] . Kaiser, H. W. Astle. Low-loss single-material fibers made from pure fused silica[J]. The Bell System Technical Journal, 1974, 53(6): 1021-1039.

[17] . Kumar, A. K. George, W. H. Reeves et al.. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Opt. Express, 2002, 10(25): 1520-1525.

[18] . A. van Eijkelenborg, M. C. J. Large, A. Argyros et al.. Microstructured polymer optical fibre[J]. Opt. Express, 2001, 9(7): 319-327.

[19] . Temelkuran, S. D. Hart, G. Benoit et al.. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420(6916): 650-653.

[20] . Falkenstein, C. D. Merritt, B. L. Justus. Fused preforms for the fabrication of photonic crystal fibers[J]. Opt. Lett., 2004, 29(16): 1858-1860.

[21] . J. Wadsworth, R. M. Percival, G. Bouwmans et al.. Very high numerical aperture fibers[J]. IEEE Photon. Technol. Lett., 2004, 16(3): 843-845.

[22] . Argyros, I. M. Bassett, M. A. van Eijkelenborg et al.. Analysis of ring-structured Bragg fibres for single TE mode guidance[J]. Opt. Express, 2004, 12(12): 2688-2698.

[23] K. Tajima, J. Zhou, Ultra low loss and long length photonic crystal fiber [J]. IEICE Trans. Electron., 2005, E88C(5):870~875

[24] . Tajima, J. Zhou, K. Nakajima et al.. Ultralow loss and long length photonic crystal fiber[J]. J. Lightwave Technol., 2004, 22(1): 7-10.

[25] . Zhou, K. Tajima, K. Nakajima et al.. Progress on low loss photonic crystal fibers[J]. Opt. Fiber Technol., 2005, 11(2): 101-110.

[26] . J. Roberts, F. Couny, H. Sabert et al.. Ultimate low loss of hollow-core photonic crystal fibres[J]. Opt. Express, 2005, 13(1): 236-244.

[27] . M. Monro, P. J. Bennett, N. G. R. Broderick et al.. Holey fibers with random cladding distributions[J]. Opt. Lett., 2000, 25(4): 206-208.

[28] . Benabid, J. C. Knight, G. Antonopoulos et al.. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002, 298(5592): 399-402.

[29] . Benabid, G. Bouwmans, J. C. Knight et al.. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Phys. Rev. Lett., 2004, 93(12): 123903-1.

[30] G. P. Agrawal. Nonlinear Fiber Optics [M]. Third Edition, ed. P. L. Kelley, I. P. Kaminow, G. P. Agrawal. Academic Press, 2001

[31] . G. Leon-Saval, T. A. Birks, W. J. Wadsworth et al.. Supercontinuum generation in submicron fibre waveguides[J]. Opt. Express, 2004, 12(13): 2864-2869.

[32] . Hundertmark, D. Kracht, D. Wandt et al.. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm[J]. Opt. Express, 2003, 11(24): 3196-3201.

[33] K. L. Corwin, N. R. Newbury, J. M. Dudley et al.. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber [J]. Appl. Phys. B, 2003, 77(2-3):269~277

[34] . Apolonski, B. Povazay, A. Unterhuber et al.. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. J. Opt. Soc. Am. B, 2002, 19(9): 2165-2170.

[35] . Coen, A. H. L. Chau, R. Leonhardt et al.. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt. Lett., 2001, 26(17): 1356-1358.

[36] . K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt. Lett., 2000, 25(1): 25-27.

[37] . J. Jones, S. A. Diddams, J. K. Ranka et al.. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[38] . A. Diddams, D. J. Jones, J. Ye et al.. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys. Rev. Lett., 2000, 84(22): 5102-5105.

[39] . Povazay, K. Bizheva, B. Hermann et al.. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm[J]. Opt. Express, 2003, 11(17): 1980-1986.

[40] . M. Wang, Y. H. Zhao, J. S. Nelson et al.. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber[J]. Opt. Lett., 2003, 28(3): 182-184.

[41] . Povazay, K. Bizheva, A. Unterhuber et al.. Submicrometer axial resolution optical coherence tomography[J]. Opt. Lett., 2002, 27(20): 1800-1802.

[42] . L. Gaeta. Nonlinear propagation and continuum generation in microstructured optical fibers[J]. Opt. Lett., 2002, 27(11): 924-926.

[43] . Herrmann, U. Griebner, N. Zhavoronkov et al.. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers[J]. Phys. Rev. Lett., 2002, 88(17): 173901-1.

[44] . V. Husakou, J. Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[J]. Phys. Rev. Lett., 2001, 87(20): 203901-1.

[45] . Gu, M. Kimmel, A. P. Shreenath et al.. Experimental studies of the coherence of microstructure-fiber supercontinuum[J]. Opt. Express, 2003, 11(21): 2697-2703.

[46] . L. Corwin, N. R. Newbury, J. M. Dudley et al.. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Phys. Rev. Lett., 2003, 90(11): 113904-1.

[47] . R. Newbury, B. R. Washburn, K. L. Corwin et al.. Noise amplification during supercontinuum generation in microstructure fiber[J]. Opt. Lett., 2003, 28(11): 944-946.

[48] . M. Dudley, S. Coen. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Opt. Lett., 2002, 27(13): 1180-1182.

[49] . M. Dudley, S. Coen. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber[J]. Opt. Express, 2004, 12(11): 2423-2428.

[50] . K. Ranka, R. S. Windeler, A. J. Stentz. Optical properties of high-delta air-silica microstructure optical fibers[J]. Opt. Lett., 2000, 25(11): 796-798.

[51] . G. Omenetto, A. J. Taylor, M. D. Moores et al.. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber[J]. Opt. Lett., 2001, 26(15): 1158-1160.

[52] . G. Omenetto, A. Efimov, A. J. Taylor et al.. Polarization dependent harmonic generation in microstructured fibers[J]. Opt. Express, 2003, 11(1): 61-67.

[53] . Efimov, A. J. Taylor, F. G. Omenetto et al.. Phase-matched third harmonic generation in microstructured fibers[J]. Opt. Express, 2003, 11(20): 2567-2576.

[54] . Efimov, A. J. Taylor. Nonlinear generation of very high-order UV modes in microstructured fibers[J]. Opt. Express, 2003, 11(8): 910-918.

[55] . A. Akimov, E. E. Serebryannikov, A. M. Zheltikov et al.. Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber[J]. Opt. Lett., 2003, 28(20): 1948-1950.

[56] . O. Konorov, E. E. Serebryannikov, P. Zhou et al.. Mode-controlled spectral transformation of femtosecond laser pulses in microstructure fibers[J]. Laser Phys. Lett., 2004, 1(4): 199-204.

[57] . Hu, C.-Y. Wang, Y. Li et al.. An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field[J]. Appl. Phys. B, 2004, 79(7): 805-809.

[58] . . Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(3): 630-632.

[59] . L. Hu, C. Y. Wang, L. Chai et al.. Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber[J]. Opt. Express, 2004, 12(9): 1932-1937.

[60] . L. Hu, C. Y. Wang, Y. F. Li et al.. Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers[J]. Opt. Express, 2005, 13(16): 5947-5952.

[61] . E. Serebryannikov, M. L. Hu, Y. F. Li et al.. Enhanced soliton self-frequency shift of ultrashort light pulses[J]. JETP Lett., 2005, 81(10): 487-490.

[62] . J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch et al.. Soliton effects in photonic crystal fibres at 850 nm[J]. Electron. Lett., 2000, 36(1): 53-55.

[63] . Liu, C. Xu, W. H. Knox et al.. Soliton self-frequency shift in a short tapered air-silica microstructure fiber[J]. Opt. Lett., 2001, 26(6): 358-360.

[64] . G. Ouzounov, F. R. Ahmad, D. Müller et al.. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers[J]. Science, 2003, 301(5640): 1702-1704.

[65] . Q. Chang, T. B. Norris, H. G. Winful. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression[J]. Opt. Lett., 2003, 28(7): 546-548.

[66] . Sudmeyer, F. Brunner, E. Innerhofer et al.. Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber[J]. Opt. Lett., 2003, 28(20): 1951-1953.

[67] . McConnell, E. Riis. Ultra-short pulse compression using photonic crystal fibre[J]. Appl. Phys. B, 2004, 78(5): 557-563.

[68] . Lako, J. Seres, P. Apai et al.. Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation[J]. Appl. Phys. B, 2003, 76(3): 267-275.

[69] . Adachi, K. Yamane, R. Morita et al.. Pulse compression using direct feedback of the spectral phase from photonic crystal fiber output without the need for the Taylor expansion method[J]. IEEE Photon. Technol. Lett., 2004, 16(8): 1951-1953.

[70] . Schenkel, R. Paschotta, U. Keller. Pulse compression with supercontinuum generation in microstructure fibers[J]. J. Opt. Soc. Am. B, 2005, 22(3): 687-693.

[71] N. Nishizawa, Y. Ito, T. Goto. Wavelength-tunable femtosecond soliton pulse generation for wavelengths of 0.78~1.0 μm using photonic crystal fibers and a ultrashort fiber laser [J]. Jpn. J. Appl. Phys., 2003, 42(Part 1, 2A):449~452

[72] . Gobel, A. Nimmerjahn, F. Helmchen. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber[J]. Opt. Lett., 2004, 29(11): 1285-1287.

[73] . S. Abedin, F. Kubota. Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber[J]. Opt. Lett., 2003, 28(19): 1760-1762.

[74] . J. Wadsworth, N. Joly, J. C. Knight et al.. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres[J]. Opt. Express, 2004, 12(2): 299-309.

[75] . R. Folkenberg, M. D. Nielsen, N. A. Mortensen et al.. Polarization maintaining large mode area photonic crystal fiber[J]. Opt. Express, 2004, 12(5): 956-960.

[76] . A. Mortensen, M. D. Nielsen, J. R. Folkenberg et al.. Improved large-mode-area endlessly single-mode photonic crystal fibers[J]. Opt. Lett., 2003, 28(6): 393-395.

[77] . G. Ouzounov, K. D. Moll, M. A. Foster et al.. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers[J]. Opt. Lett., 2002, 27(17): 1513-1515.

[78] . Poli, A. Cucinotta, M. Fuochi et al.. Characterization of microstructured optical fibers for wideband dispersion compensation[J]. J. Opt. Soc. Am. A, 2003, 20(10): 1958-1962.

[79] . A. Birks, D. Mogilevtsev, J. C. Knight et al.. Dispersion compensation using single-material fibers[J]. IEEE Photon. Technol. Lett., 1999, 11(6): 674-676.

[80] . . Dual-core photonic crystal fiber for dispersion compensation[J]. IEEE Photon. Technol. Lett., 2004, 16(6): 1516-1518.

[81] . L. Hu, C. Y. Wang, Y. F. Li et al.. Supercontinuum generation and transmission in a random distributed microstructure fiber[J]. Laser Phys., 2004, 14(5): 776-779.

[82] Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber [J]. Acta Physica Sinica, 2004, 53(12):4243~4247
胡明列,王清月,栗岩锋 等. 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究[J]. 物理学报, 2004, 53(12):4243~4247

[83] Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Enhanced spectral broadening by femtosecond pulses in large-air-filling fraction microstructure fiber [J]. Chinese J. Lasers, 2004, 31(12):1429~1432
胡明列,王清月, 栗岩锋 等. 飞秒激光在大空气比微结构光纤中增强的非线性光谱展宽[J]. 中国激光, 2004, 31(12):1429~1432

[84] Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Supercontinuum generation and transmission in a random distorted microstructure fiber [J]. Chinese J. Lasers, 2004, 31(5):567~569
胡明列,王清月,栗岩锋 等. 非均匀微结构光纤中超连续光的产生和传输[J]. 中国激光, 2004, 31(5):567~569

[85] . Benabid, J. C. Knight, P. S. Russell. Particle levitation and guidance in hollow-core photonic crystal fiber[J]. Opt. Express, 2002, 10(21): 1195-1203.

[86] . V. Mel’nikov, J. W. Haus, P. G. Kazansky. Vecksler-Macmillan phase stability for neutral atoms accelerated by a laser beam[J]. Opt. Commun., 2003, 220: 143-150.

[87] . Michaille, C. R. Bennett, D. M. Taylor et al.. Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area[J]. Opt. Lett., 2005, 30(13): 1668-1670.

[88] . Mafi, J. V. Moloney. Phase locking in a passive multicore photonic crystal fiber[J]. J. Opt. Soc. Am. B, 2004, 21(5): 897-902.

[89] . F. Zou, X. Y. Bao, L. A. Chen. Distributed Brillouin temperature sensing in photonic crystal fiber[J]. Smart Mater. Struct., 2005, 14(3): S8-S11.

[90] T. Nasilowski, T. Martynkien, G. Statkiewicz et al.. Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry [J]. Appl. Phys. B, 2005, 81(2-3):325~331

[91] . Pickrell, W. Peng, A. Wang. Random-hole optical fiber evanescent-wave gas sensing[J]. Opt. Lett., 2004, 29(13): 1476-1478.

[92] . L. Hoo, W. Jin, H. L. Ho et al.. Evanescent-wave gas sensing using microstructure fiber[J]. Opt. Eng., 2002, 41(1): 8-9.

[93] . L. Hoo, W. Jin, C. Z. Shi et al.. Design and modeling of a photonic crystal fiber gas sensor[J]. Appl. Opt., 2003, 42(18): 3509-3515.

[94] . J. Webb. Optical-fiber sensors: An overview[J]. MRS Bull., 2002, 27(5): 365-369.

[95] . Steinvurzel, B. J. Eggleton, C. M. de Sterke et al.. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre[J]. Electron. Lett., 2005, 41(8): 463-464.

[96] . Kerbage, M. Sumetsky, B. J. Eggleton. Polarisation tuning by micro-fluidic motion in air-silica microstructured optical fibre[J]. Electron. Lett., 2002, 38(18): 1015-1017.

[97] . Kerbage, P. Steinvurzel, A. Hale et al.. Microstructured optical fibre with tunable birefringence[J]. Electron. Lett., 2002, 38(7): 310-312.

[98] . G. Rarity, J. Fulconis, J. Duligall et al.. Photonic crystal fiber source of correlated photon pairs[J]. Opt. Express, 2005, 13(2): 534-544.

[99] A. Dogariu, J. Y. Fan, L. J. Wang. Correlated photon

[100] . Fan, A. Dogariu, L. J. Wang. Generation of correlated photon pairs in a microstructure fiber[J]. Opt. Lett., 2005, 30(12): 1530-1532.

[101] . E. Sharping, J. Chen, X. Y. Li et al.. Quantum-correlated twin photons from microstructure fiber[J]. Opt. Express, 2004, 12(14): 3086-3094.

[102] . Yusoff, P. Petropoulos, K. Furusawa et al.. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber[J]. IEEE Photon. Technol. Lett., 2003, 15(12): 1689-1691.

[103] . A. van Eijkelenborg. Imaging with microstructured polymer fibre[J]. Opt. Express, 2004, 12(2): 342-346.

[104] . Furusawa, T. Kogure, J. K. Sahu et al.. Efficient low-threshold lasers based on an erbium-doped holey fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(1): 25-27.

[105] . Furusawa, A. Malinowski, J. H. V. Price et al.. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding[J]. Opt. Express, 2001, 9(13): 714-720.

[106] . F. Cregan, J. C. Knight, P. St. Russell et al.. Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber[J]. J. Lightwave Technol., 1999, 17(11): 2138-2141.

[107] . Bouwmans, R. M. Percival, W. J. Wadsworth et al.. High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide[J]. Appl. Phys. Lett., 2003, 83(5): 817-818.

[108] . Limpert, N. Deguil-Robin, S. Petit et al.. High power Q-switched Yb-doped photonic crystal fiber laser producing sub-10 ns pulses[J]. Appl. Phys. B, 2005, 81(1): 19-21.

[109] . Limpert, N. D. Robin, I. Manek-Honninger et al.. High-power rod-type photonic crystal fiber laser[J]. Opt. Express, 2005, 13(4): 1055-1058.

[110] . Limpert, T. Schreiber, A. Liem et al.. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation[J]. Opt. Express, 2003, 11(22): 2982-2990.

[111] . Limpert, T. Schreiber, S. Nolte et al.. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Opt. Express, 2003, 11(7): 818-823.

[112] G. Bonati, H. Voelckel, T. Gabler et al.. 1.53 kW from a single Yb-doped photonic crystal fiber laser [C]. in Photonics West. 2005, San Jose

[113] . Moenster, P. Glas, G. Steinmeyer et al.. Femtosecond neodymium-doped microstructure fiber laser[J]. Opt. Express, 2005, 13(21): 8671-8677.

[114] . Holzwarth, Th. Udem, T. W. Hnsch et al.. Optical frequency synthesizer for precision spectroscopy[J]. Phys. Rev. Lett., 2000, 85(11): 2264-2267.

[115] . Holzwarth, A. Yu. Nevsky, M. Zimmermann et al.. Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer[J]. Appl. Phys. B, 2001, 73(3): 269-271.

王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57. 王清月, 胡明列, 柴路. Progress in Nonlinear Optics with Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2006, 33(1): 57.

本文已被 52 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!