中国激光, 2020, 47 (2): 0207008, 网络出版: 2020-02-21   

二次谐波在生物医学成像中的应用 下载: 3371次特邀综述

Application of Second Harmonic Generation in Biomedical Imaging
作者单位
1 南方科技大学生物医学工程系, 广东 深圳 518000
2 哈尔滨工业大学生命科学与技术学院, 黑龙江 哈尔滨 150000
引用该论文

张子一, 王明雪, 刘志贺, 房晓峰, 吴长锋. 二次谐波在生物医学成像中的应用[J]. 中国激光, 2020, 47(2): 0207008.

Zhang Ziyi, Wang Mingxue, Liu Zhihe, Fang Xiaofeng, Wu Changfeng. Application of Second Harmonic Generation in Biomedical Imaging[J]. Chinese Journal of Lasers, 2020, 47(2): 0207008.

参考文献

[1] Rajadhyaksha M, Grossman M, Esterowitz D, et al. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast[J]. Journal of Investigative Dermatology, 1995, 104(6): 946-952.

[2] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

[3] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796.

[4] Dempsey W P, Fraser S E, Pantazis P. SHG nanoprobes: advancing harmonic imaging in biology[J]. BioEssays, 2012, 34(5): 351-360.

[5] Staedler D, Magouroux T, Hadji R, et al. Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility[J]. ACS Nano, 2012, 6(3): 2542-2549.

[6] Sun C L, Li J, Wang X Z, et al. Rational design of organic probes for turn-on two-photon excited fluorescence imaging and photodynamic therapy[J]. Chem, 2019, 5(3): 600-616.

[7] Pantazis P, Maloney J, Wu D, et al. Second harmonic generating (SHG) nanoprobes for in vivo imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(33): 14535-14540.

[8] Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.

[9] Croissant J G, Zink J I, Raehm L, et al. Two-photon-excited silica and organosilica nanoparticles for spatiotemporal cancer treatment[J]. Advanced Healthcare Materials, 2018, 7(7): 1701248.

[10] Evans C L, Xie X S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine[J]. Annual Review of Analytical Chemistry, 2008, 1(1): 883-909.

[11] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering[J]. Physical Review Letters, 1999, 82(20): 4142.

[12] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118.

[13] Mostaço-Guidolin L, Rosin N, Hackett T L. Imaging collagen in scar tissue: developments in second harmonic generation microscopy for biomedical applications[J]. International Journal of Molecular Sciences, 2017, 18(8): 1772.

[14] Chen X Y, Nadiarynkh O, Plotnikov S, et al. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure[J]. Nature Protocols, 2012, 7(4): 654-669.

[15] Nakayama Y, Pauzauskie P J, Radenovic A, et al. Tunable nanowire nonlinear optical probe[J]. Nature, 2007, 447(7148): 1098-1101.

[16] Ma C R, Yan J H, Wei Y M, et al. Enhanced second harmonic generation in individual Barium titanate nanoparticles driven by Mie resonances[J]. Journal of Materials Chemistry C, 2017, 5(19): 4810-4819.

[17] Hsieh C L, Grange R, Pu Y, et al. Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging[J]. Optics Express, 2009, 17(4): 2880.

[18] Kim E, Steinbrück A, Buscaglia M T, et al. Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter[J]. ACS Nano, 2013, 7(6): 5343-5349.

[19] Schwung S, Rogov A, Clarke G, et al. Nonlinear optical and magnetic properties of BiFeO3 harmonic nanoparticles[J]. Journal of Applied Physics, 2014, 116(11): 114306.

[20] Duan Y L, Ju C G, Yang G, et al. Aggregation induced enhancement of linear and nonlinear optical emission from a hexaphenylene derivative[J]. Advanced Functional Materials, 2016, 26(48): 8968-8977.

[21] Chervy T, Xu J L, Duan Y L, et al. High-efficiency second-harmonic generation from hybrid light-matter states[J]. Nano Letters, 2016, 16(12): 7352-7356.

[22] Long N J. Organometallic compounds for nonlinear optics: the search for en-light-enment![J]. Angewandte Chemie International Edition in English, 1995, 34(1): 21-38.

[23] Verbiest T, Houbrechts S, Kauranen M, et al. Second-order nonlinear optical materials: recent advances in chromophore design[J]. Journal of Materials Chemistry, 1997, 7(11): 2175-2189.

[24] Xu J L, Semin S, Niedzialek D, et al. Self-assembled organic microfibers for nonlinear optics[J]. Advanced Materials, 2013, 25(14): 2084-2089.

[25] Li J H, Qiu J C, Guo W B, et al. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation[J]. Nanoscale, 2016, 8(14): 7416-7422.

[26] Knabe B, Buse K, Assenmacher W, et al. Spontaneous polarization in ultrasmall lithium niobate nanocrystals revealed by second harmonic generation[J]. Physical Review B, 2012, 86(19): 195428.

[27] Kachynski A V, Kuzmin A N, Nyk M, et al. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine[J]. The Journal of Physical Chemistry C, 2008, 112(29): 10721-10724.

[28] Bonacina L, Mugnier Y, Courvoisier F, et al. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy[J]. Applied Physics B, 2007, 87(3): 399-403.

[29] Ladj R, El Kass M, Mugnier Y, et al. SHG active Fe(IO3)3 particles: from spherical nanocrystals to urchin-like microstructures through the additive-mediated microemulsion route[J]. Crystal Growth & Design, 2012, 12(11): 5387-5395.

[30] Marder S R, Beratan D N, Cheng L T. Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules[J]. Science, 1991, 252(5002): 103-106.

[31] Grinvald A, Hildesheim R, Farber I C, et al. Improved fluorescent probes for the measurement of rapid changes in membrane potential[J]. Biophysical Journal, 1982, 39(3): 301-308.

[32] Dombeck D A, Sacconi L, Blanchard-Desce M, et al. Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy[J]. Journal of Neurophysiology, 2005, 94(5): 3628-3636.

[33] Eisenthal K B, Yuste R. Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity[J]. Biophysical Journal, 2007, 93(5): L26-L28.

[34] Millard A C, Jin L, Wei M D, et al. Sensitivity of second harmonic generation from styryl dyes to transmembrane potential[J]. Biophysical Journal, 2004, 86(2): 1169-1176.

[35] Nuriya M, Fukushima S, Momotake A, et al. Multimodal two-photon imaging using a second harmonic generation-specific dye[J]. Nature Communications, 2016, 7: 11557.

[36] Qi X Y, Liu H P, Guo W J, et al. New opportunities: second harmonic generation of boron-doped graphene quantum dots for stem cells imaging and ultraprecise tracking in wound healing[J]. Advanced Functional Materials, 2019, 29(37): 1902235.

[37] Burnette D T, Sengupta P, Dai Y, et al. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 21081-21086.

[38] Salthouse C, Hildebrand S, Weissleder R, et al. Design and demonstration of a small-animal upconversion imager[J]. Optics Express, 2008, 16(26): 21731-21737.

[39] CorstjensP, LiS, ZuiderwijkM, et al. Infrared up-converting phosphors for bioassays[C]∥IEE Proceedings-Nanobiotechnology. IET Digital Library, 2005, 152( 2): 64- 72.

[40] Sivakumar S. Diamente P R, van Veggel F C. Silica-coated Ln 3+-doped LaF3 nanoparticles as robust down- and upconverting biolabels[J]. Chemistry: A European Journal, 2006, 12(22): 5878-5884.

[41] Qian X M, Peng X H, Ansari D O, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology, 2008, 26(1): 83-90.

[42] Zavaleta C L, Smith B R, Walton I, et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(32): 13511-13516.

[43] Nie S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

[44] Michaels A M, Nirmal M, Brus L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals[J]. Journal of the American Chemical Society, 1999, 121(43): 9932-9939.

[45] Wu S, Han G, Milliron D J, et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10917-10921.

[46] Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins[J]. Nature Methods, 2005, 2(12): 905-909.

[47] Freund I. Deutsch M. Second-harmonic microscopy of biological tissue[J]. Optics Letters, 1986, 11(2): 94-96.

[48] Huang J Y, Lewis A, Loew L. Nonlinear optical properties of potential sensitive styryl dyes[J]. Biophysical Journal, 1988, 53(5): 665-670.

[49] Sugiyama N, Sonay A Y, Tussiwand R, et al. Effective labeling of primary somatic stem cells with BaTiO3 nanocrystals for second harmonic generation imaging[J]. Small, 2018, 14(8): 1870036.

[50] Betzer O, Meir R, Dreifuss T, et al. In-vitro optimization of nanoparticle-cell labeling protocols for in-vivo cell tracking applications[J]. Scientific Reports, 2015, 5: 15400.

[51] Grange R, Lanvin T, Hsieh C L, et al. Imaging with second-harmonic radiation probes in living tissue[J]. Biomedical Optics Express, 2011, 2(9): 2532-2539.

[52] Dubreil L, Leroux I, Ledevin M, et al. Multi-harmonic imaging in the second near-infrared window of nanoparticle-labeled stem cells as a monitoring tool in tissue depth[J]. ACS Nano, 2017, 11(7): 6672-6681.

[53] Ramos-Gomes F, Möbius W, Bonacina L, et al. Bismuth ferrite second harmonic nanoparticles for pulmonary macrophage tracking[J]. Small, 2019, 15(4): 1803776.

[54] Pu Y, Grange R, Hsieh C L, et al. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation[J]. Physical Review Letters, 2010, 104(20): 207402.

[55] Wang Y F, Barhoumi A, Tong R, et al. BaTiO3-core Au-shell nanoparticles for photothermal therapy and bimodal imaging[J]. Acta Biomaterialia, 2018, 72: 287-294.

[56] Kharin A Y, Lysenko V V, Rogov A, et al. Bi-modal nonlinear optical contrast from Si nanoparticles for cancer theranostics[J]. Advanced Optical Materials, 2019, 1801728.

[57] Liu Y, Zhu X Q, Huang Z F, et al. Texture analysis of collagen second-harmonic generation images based on local difference local binary pattern and wavelets differentiates human skin abnormal scars from normal scars[J]. Journal of Biomedical Optics, 2015, 20(1): 016021.

[58] Mercatelli R, Ratto F, Rossi F, et al. Three-dimensional mapping of the orientation of collagen corneal lamellae in healthy and keratoconic human corneas using SHG microscopy[J]. Journal of Biophotonics, 2017, 10(1): 75-83.

[59] Van Steenbergen V, Boesmans W, Li Z, et al. Molecular understanding of label-free second harmonic imaging of microtubules[J]. Nature Communications, 2019, 10: 3530.

[60] Sacconi L, Dombeck D A, Webb W W. Overcoming photodamage in second-harmonic generation microscopy: Real-time optical recording of neuronal action potentials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9): 3124-3129.

[61] Gayen A, Kumar D, Matheshwaran S, et al. Unveiling the modulating role of extracellular pH in permeation and accumulation of small molecules in subcellular compartments of gram-negative escherichia coli using nonlinear spectroscopy[J]. Analytical Chemistry, 2019, 91(12): 7662-7671.

[62] Reeve J E, Anderson H L, Clays K. Dyes for biological second harmonic generation imaging[J]. Physical Chemistry Chemical Physics, 2010, 12(41): 13484-13498.

[63] Campagnola P J, Loew L M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms[J]. Nature Biotechnology, 2003, 21(11): 1356-1360.

[64] Kachynski A V, Pliss A, Kuzmin A N, et al. Photodynamic therapy by in situ nonlinear photon conversion[J]. Nature Photonics, 2014, 8(6): 455-461.

[65] Bi H T, Dai Y L, Yang P P, et al. Glutathione mediated size-tunable UCNPs-Pt(IV)-ZnFe2O4 nanocomposite for multiple bioimaging guided synergetic therapy[J]. Small, 2018, 14(13): 1703809.

[66] Gu B B, Pliss A, Kuzmin A N, et al. In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space[J]. Biomaterials, 2016, 104: 78-86.

[67] Zhou X Y, Chen Y, Su J, et al. In situ second-harmonic generation mediated photodynamic therapy by micelles co-encapsulating coordination nanoparticle and photosensitizer[J]. RSC Advances, 2017, 7(82): 52125-52132.

[68] Barhoumi A. NIR-triggered drug delivery by collagen-mediated second harmonic generation[J]. Advanced Healthcare Materials, 2015, 4(8): 1159-1163.

张子一, 王明雪, 刘志贺, 房晓峰, 吴长锋. 二次谐波在生物医学成像中的应用[J]. 中国激光, 2020, 47(2): 0207008. Zhang Ziyi, Wang Mingxue, Liu Zhihe, Fang Xiaofeng, Wu Changfeng. Application of Second Harmonic Generation in Biomedical Imaging[J]. Chinese Journal of Lasers, 2020, 47(2): 0207008.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!