Advanced Photonics, 2019, 1 (3): 036003, Published Online: Jun. 19, 2019   

Holographic particle localization under multiple scattering Download: 531次

Author Affiliations
1 Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
2 Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
3 Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, Missouri, United States
Copy Citation Text

Waleed Tahir, Ulugbek S. Kamilov, Lei Tian. Holographic particle localization under multiple scattering[J]. Advanced Photonics, 2019, 1(3): 036003.

References

[1] I. Moon, et al.. Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy. Proc. IEEE, 2009, 97(6): 990-1010.

[2] T.-W. Su, L. Xue, A. Ozcan. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(40): 16018-16022.

[3] F. C. Cheong, et al.. Flow visualization and flow cytometry with holographic video microscopy. Opt. Express, 2009, 17(15): 13071-13079.

[4] J. Garcia-Sucerquia, et al.. Digital in-line holographic microscopy. Appl. Opt., 2006, 45(5): 836-850.

[5] J. Sheng, E. Malkiel, J. Katz. Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl. Opt., 2006, 45(16): 3893-3901.

[6] L. Tian, et al.. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography. Appl. Opt., 2010, 49(9): 1549-1554.

[7] P. Picart, et al.. Tracking high amplitude auto-oscillations with digital Fresnel holograms. Opt. Express, 2007, 15(13): 8263-8274.

[8] U. Schnars, W. P. Jüptner. Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol., 2002, 13(9): R85.

[9] F. Soulez, et al.. Inverse-problem approach for particle digital holography: accurate location based on local optimization. J. Opt. Soc. Am. A, 2007, 24(4): 1164-1171.

[10] W. Chen, et al.. Empirical concentration bounds for compressive holographic bubble imaging based on a Mie scattering model. Opt. Express, 2015, 23(4): 4715-4725.

[11] D. J. Brady, et al.. Compressive holography. Opt. Express, 2009, 17(15): 13040-13049.

[12] Y. Rivenson, A. Stern, B. Javidi. Compressive Fresnel holography. J. Disp. Technol., 2010, 6(10): 506-509.

[13] M.Born and E.Wolf, “Scattering from inhomogeneous media,” in Principles of Optics, 7 ed., pp. 695734, Cambridge University Press, Cambridge (2003).

[14] W. C. Chew, Y. M. Wang. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Med. Imaging, 1990, 9: 218-225.

[15] F.-C. Chen, W. C. Chew. Experimental verification of super resolution in nonlinear inverse scattering. Appl. Phys. Lett., 1998, 72(23): 3080-3082.

[16] U. S. Kamilov, et al.. A recursive Born approach to nonlinear inverse scattering. IEEE Signal Process. Lett., 2016, 23: 1052-1056.

[17] G. A. Tsihrintzis, A. J. Devaney. Higher-order (nonlinear) diffraction tomography: reconstruction algorithms and computer simulation. IEEE Trans. Image Process., 2000, 9(9): 1560-1572.

[18] R. Pierri, G. Leone. Inverse scattering of dielectric cylinders by a second-order born approximation. IEEE Trans. Geosci. Remote Sens., 1999, 37(1): 374-382.

[19] P. M. van den Berg, R. E. Kleinman. A contrast source inversion method. Inverse Prob., 1997, 13: 1607-1620.

[20] M. T. Bevacquad, et al.. Non-linear inverse scattering via sparsity regularized contrast source inversion. IEEE Trans. Comput. Imaging, 2017, 3(2): 296-304.

[21] P. M. van den Berg, A. Van Broekhoven, A. Abubakar. Extended contrast source inversion. Inverse Prob., 1999, 15(5): 1325-1344.

[22] P. Van den Berg, A. Abubakar. Contrast source inversion method: state of art. Prog. Electromagn. Res., 2001, 34(11): 189-218.

[23] R. E. Kleinman, P. M. van den Berg. A modified gradient method for two-dimensional problems in tomography. J. Comput. Appl. Math., 1992, 42(1): 17-35.

[24] R. E. Kleinman, P. M. van den Berg. An extended range-modified gradient technique for profile inversion. Radio Sci., 1993, 28: 877-884.

[25] H.-Y. Liu, et al.. SEAGLE: sparsity-driven image reconstruction under multiple scattering. IEEE Trans. Comput. Imaging, 2018, 4(1): 73-86.

[26] Y.Maet al., “Accelerated image reconstruction for nonlinear diffractive imaging,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, Calgary, Canada, pp. 64736477 (2018).

[27] T.-A. Pham, et al.. Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering. Opt. Express, 2018, 26(3): 2749-2763.

[28] J. Lim, et al.. Beyond Born–Rytov limit for super-resolution optical diffraction tomography. Opt. Express, 2017, 25(24): 30445-30458.

[29] F. Simonetti. Multiple scattering: the key to unravel the subwavelength world from the far-field pattern of scattered wave. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, 73: 036619.

[30] E. Mudry, et al.. Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method. Inverse Prob., 2012, 28: 065007.

[31] L. Tian, L. Waller. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2015, 2(2): 104-111.

[32] U. S. Kamilov, et al.. Optical tomographic image reconstruction based on beam propagation and sparse regularization. IEEE Trans. Comput. Imaging, 2016, 2(1): 59-70.

[33] U. S. Kamilov, et al.. Learning approach to optical tomography. Optica, 2015, 2(6): 517-522.

[34] M. Guizar-Sicairos, J. R. Fienup. Understanding the twin-image problem in phase retrieval. J. Opt. Soc. Am. A, 2012, 29(11): 2367-2375.

[35] A.Beck, M.Teboulle, “Gradient-based algorithms with applications to signal-recovery problems,” in Convex Optimization in Signal Processing and Communications, , D. P.Palomar and Y. C.Eldar, Eds., pp. 4288, Cambridge University Press, Cambridge (2009).

[36] W. Zhang, et al.. Twin-image-free holography: a compressive sensing approach. Phys. Rev. Lett., 2018, 121(9): 093902.

[37] R. Ling, et al.. High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express, 2018, 9(5): 2130-2141.

[38] J. Lim, et al.. Learning tomography assessed using Mie theory. Phys. Rev. Appl., 2018, 9(3): 034027.

[39] L.Rokach and O.Maimon, Clustering Methods, Springer US, Boston, Massachusetts, pp. 321352 (2005).

[40] Gnome icon theme, ,” (accessed 3 March 2019).

[41] D. Mas, et al.. Fast algorithms for free-space diffraction patterns calculation. Opt. Commun., 1999, 164(4–6): 233-245.

[42] A. D. Yaghjian. Electric dyadic Green’s functions in the source region. Proc. IEEE, 1980, 68(2): 248-263.

[43] J. Van Bladel. Some remarks on Green’s dyadic for infinite space. IRE Trans. Antennas Propag., 1961, 9(6): 563-566.

[44] A. Fannjiang. Tv-min and greedy pursuit for constrained joint sparsity and application to inverse scattering. Math. Mech. Complex Syst., 2013, 1(1): 81-104.

[45] A.Fannjiang, “Compressive sensing theory for optical systems described by a continuous model,” (2015).

[46] A. Beck, M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process., 2009, 18(11): 2419-2434.

[47] U. S. Kamilov. A parallel proximal algorithm for anisotropic total variation minimization. IEEE Trans. Image Process., 2017, 26(2): 539-548.

[48] N. Andrei. An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms, 2006, 42(1): 63-73.

[49] M. Azimi, A. Kak. Distortion in diffraction tomography caused by multiple scattering. IEEE Trans. Med. Imaging, 1983, 2(4): 176-195.

[50] S. Bolte, F. Cordelieres. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc., 2006, 224(3): 213-232.

[51] A.Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2, Academic Press, New York (1978).

[52] G. Osnabrugge, S. Leedumrongwatthanakun, I. M. Vellekoop. A convergent born series for solving the inhomogeneous Helmholtz equation in arbitrarily large media. J. Comput. Phys., 2016, 322: 113-124.

[53] Y. Sun, Z. Xia, U. S. Kamilov. Efficient and accurate inversion of multiple scattering with deep learning. Opt. Express, 2018, 26(11): 14678-14688.

[54] S. Li, et al.. Imaging through glass diffusers using densely connected convolutional networks. Optica, 2018, 5(7): 803-813.

[55] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 2018, 5(10): 1181-1190.

Waleed Tahir, Ulugbek S. Kamilov, Lei Tian. Holographic particle localization under multiple scattering[J]. Advanced Photonics, 2019, 1(3): 036003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!