激光与光电子学进展, 2019, 56 (24): 240001, 网络出版: 2019-11-26   

用于三维显示的全息压缩技术概述 下载: 1612次封面文章

Overview of Holographic-Compression Technology for Three-Dimensional Display
作者单位
昆明理工大学理学院激光研究所, 云南 昆明 650500
引用该论文

姜智翔, 桂进斌, 王国庆, 金晓宇. 用于三维显示的全息压缩技术概述[J]. 激光与光电子学进展, 2019, 56(24): 240001.

Zhixiang Jiang, Jinbin Gui, Guoqing Wang, Xiaoyu Jin. Overview of Holographic-Compression Technology for Three-Dimensional Display[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240001.

参考文献

[1] Bove V M. Display holography's digital second act[J]. Proceedings of the IEEE, 2012, 100(4): 918-928.

[2] DufauxF, Pesquet-PopescuB, CagnazzoM. Emerging technologies for 3D video: creation, coding, transmission and rendering[M]. UK: John Wiley & Sons, Ltd, 2013.

[3] Javidi B, Ferraro P, Hong S H, et al. Three-dimensional image fusion by use of multiwavelength digital holography[J]. Optics Letters, 2005, 30(2): 144-146.

[4] Onural L, Gotchev A, Ozaktas H M, et al. A survey of signal processing problems and tools in holographic three-dimensional television[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(11): 1631-1646.

[5] Dufaux F, Xing Y F, Pesquet-Popescu B, et al. Compression of digital holographic data: an overview[J]. Proceedings of SPIE, 2015, 9599: 95990I.

[6] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 1994, 33(2): 179-181.

[7] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 1997, 22(16): 1268-1270.

[8] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291-293.

[9] Dallas WJ. Computer-generated holograms[M] ∥Frieden B R. The computer in optical research: Volume 41. Topics in applied physics. [S. l.: s. n.]1980: 291- 366.

[10] Tricoles G. Computer generated holograms: an historical review[J]. Applied Optics, 1987, 26(20): 4351-4360.

[11] Blinder D, Bruylants T, Stijns E, et al. Wavelet coding of off-axis holographic images[J]. Proceedings of SPIE, 2013, 8856: 88561L.

[12] Goodman J W, Silvestri A M. Some effects of Fourier-domain phase quantization[J]. IBM Journal of Research and Development, 1970, 14(5): 478-484.

[13] Dallas W J. Phase quantization: a compact derivation[J]. Applied Optics, 1971, 10(3): 673-674.

[14] Dallas W J. Phase quantization in holograms: a few illustrations[J]. Applied Optics, 1971, 10(3): 674-676.

[15] Dallas W J, Lohmann A W. Phase quantization in holograms-depth effects[J]. Applied Optics, 1972, 11(1): 192-194.

[16] Wyrowski F. Iterative quantization of digital amplitude holograms[J]. Applied Optics, 1989, 28(18): 3864-3870.

[17] Kim M S, Guest C C. Block-quantized binary-phase holograms for optical interconnection[J]. Applied Optics, 1993, 32(5): 678-683.

[18] Nomura T, Okazaki A, Kameda M, et al. Digital holographic data reconstruction with data compression[J]. Proceedings of SPIE, 2001, 4471: 235-242.

[19] Chang HT. Preliminary studies on compressing interference patterns in electronic holography[M] ∥Kuo C J, Tsai M H. Three-dimensional holographic imaging. New York: John Wiley & Sons, Inc., 2002: 99- 117.

[20] Naughton T J, Frauel Y, Javidi B, et al. Compression of digital holograms for three-dimensional object reconstruction and recognition[J]. Applied Optics, 2002, 41(20): 4124-4132.

[21] Yamaguchi I, Matsumura T, Kato J I. Phase-shifting color digital holography[J]. Optics Letters, 2002, 27(13): 1108-1110.

[22] Hamada Y, Sato K, Morimoto M, et al. Recording and reconstruction of 3D color images of practical objects by phase-shifting holography[J]. Proceedings of SPIE, 2006, 6030: 603005.

[23] Darakis E, Naughton T J, Soraghan J J, et al. Measurement of compression defects in phase-shifting digital holographic data[J]. Proceedings of SPIE, 2006, 6311: 63110B.

[24] Cheremkhin P A, Kurbatova E A. Numerical comparison of scalar and vector methods of digital hologram compression[J]. Proceedings of SPIE, 2016, 10022: 1002227.

[25] Xing YF, KaanicheM, Pesquet-PopescuB, et al.Compression of digital holographic data[M] ∥Xing Y F, Kaaniche M, Pesquet-Popescu B, et al. Digital holographic data representation and compression. USA: Academic Press, 2016: 39- 70.

[26] Shortt A E, Naughton T J, Javidi B. Histogram approaches for lossy compression of digital holograms of three-dimensional objects[J]. IEEE Transactions on Image Processing, 2007, 16(6): 1548-1556.

[27] Naughton T J, Javidi B. Compression of encrypted three-dimensional objects using digital holography[J]. Optical Engineering, 2004, 43(10): 2233-2238.

[28] Mills G A, Yamaguchi I. Effects of quantization in phase-shifting digital holography[J]. Applied Optics, 2005, 44(7): 1216-1225.

[29] Shortt A E, Naughton T J, Javidi B. Combined nonuniform quantization and lossless coding of digital holograms of three-dimensional objects[J]. Proceedings of SPIE, 2003, 5243: 81-88.

[30] Shortt A E, Naughton T J, Javidi B. Nonuniform quantization compression techniques for digital holograms of three-dimensional objects[J]. Proceedings of SPIE, 2004, 5557: 30-41.

[31] Shortt A E, Naughton T J, Javidi B. A companding approach for nonuniform quantization of digital holograms of three-dimensional objects[J]. Optics Express, 2006, 14(12): 5129-5134.

[32] Xing YF, Pesquet-PopescuB, DufauxF. Vector quantization for computer generated phase-shifting holograms[C]∥2013 Asilomar Conference on Signals, Systems and Computers, November 3-6, 2013, Pacific Grove, CA, USA. New York: IEEE, 2013: 709- 713.

[33] Naughton T J. McDonald J B, Javidi B. Efficient compression of Fresnel fields for internet transmission of three-dimensional images[J]. Applied Optics, 2003, 42(23): 4758-4764.

[34] Darakis E, Soraghan J J. Use of Fresnelets for phase-shifting digital hologram compression[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3804-3811.

[35] Darakis E, Soraghan J J. Compression of phase-shifting digital holography interference patterns[J]. Proceedings of SPIE, 2006, 6187: 61870Y.

[36] TsangP, Cheung K W K, Poon T C. Low bit-rate compression of computer-generated Fresnel holograms based on vector quantization[C]∥Digital Holography and Three-Dimensional Imaging, May 9-11, 2011, Tokyo, Japan. Washington, D.C.: OSA, 2011: DTuD1.

[37] Tsang P. Cheung K W K, Poon T C. Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization [Invited][J]. Applied Optics, 2011, 50(34): H42-H49.

[38] Tsang P. Cheung K W K, Poon T C, et al. Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video[J]. Journal of Optics, 2012, 14(12): 125403.

[39] Wallace G K. The JPEG still picture compression standard[J]. Communications of the ACM, 1991, 34(4): 30-44.

[40] SchelkensP, SkodrasA, EbrahimiT. The JPEG 2000 suite[M]. UK: John Wiley & Sons, Ltd, 2009.

[41] Onural L. Digital decoding of in-line holograms[J]. Optical Engineering, 1987, 26(11): 261124.

[42] Yoshikawa H, Tamai J. Holographic image compression by motion picture coding[J]. Proceedings of SPIE, 1996, 2652: 1-9.

[43] Shortt A, Naughton T J, Javidi B. Compression of digital holograms of three-dimensional objects using wavelets[J]. Optics Express, 2006, 14(7): 2625-2630.

[44] Kurbatova E A, Cheremkhin P A, Evtikhiev N N. Methods of compression of digital holograms, based on 1-level wavelet transform[J]. Journal of Physics: Conference Series, 2016, 737(1): 012071.

[45] Bang L T, Ali Z, Quang P D, et al. Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform[J]. Optics Express, 2011, 19(9): 8019-8031.

[46] Yang G L, Shimizu E. CGH compressed and transmitted and reconstructed system with JPEG baseline processing and Fresnel transforming technique[J]. IEEJ Transactions on Electronics, Information and Systems, 2001, 121(8): 1326-1333.

[47] Yang G L, Shimizu E. Information compressed and transmitted and reconstructed system of CGH with LOCO-I image processing and Fraunhofer transforming technique[J]. IEEJ Transactions on Electronics, Information and Systems, 2000, 120(11): 1520-1527.

[48] ZhangC, Yang GL, Xie HY. Information compression of computer-generated hologram using BP neural network[C]∥Biomedical Optics and 3-D Imaging, April 11-14, 2010, Miami, Florida, United States. Washington, D.C.: OSA, 2010: JMA2.

[49] Cheremkhin P A, Kurbatova E A. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets[J]. Applied Optics, 2018, 57(1): A55-A64.

[50] International organization forstandardization ( ISO) /International electrotechnicalcommission ( IEC) .Information technology—digitalcompression and coding of continuous-tone still images: requirements and guidelines: ISO/IEC10918-1:1994[S/OL]. Switzerland: ISO. [2019-04-03]. https:∥www.iso.org/standard/18902.html.

[51] International organization forstandardization ( ISO) /International electrotechnicalcommission ( IEC) .Informationtechnology—JPEG2000image coding system: core coding system: ISO/IEC 15444-1: 2016[S/OL]. Switzerland: ISO. [2019-04-03]. https:∥www.iso.org/standard/70018.html?tdsourcetag=s_pcqq_aiomsg.

[52] YoussefA, HeshmatS. 3D holographic compression methods for real time applications[C]∥2018 International Conference on Innovative Trends in Computer Engineering (ITCE), February 19-21, 2018, Aswan, Egypt. New York: IEEE, 2018: 136- 139.

[53] Bell T, Vlahov B, Allebach J P, et al. Three-dimensional range geometry compression via phase encoding[J]. Applied Optics, 2017, 56(33): 9285-9292.

[54] Yeom S, Stern A, Javidi B. Compression of 3D color integral images[J]. Optics Express, 2004, 12(8): 1632-1642.

[55] Darakis E, Soraghan J J. Compression of interference patterns with application to phase-shifting digital holography[J]. Applied Optics, 2006, 45(11): 2437-2443.

[56] Blinder D, Bruylants T, Ottevaere H, et al. JPEG 2000-based compression of fringe patterns for digital holographic microscopy[J]. Optical Engineering, 2014, 53(12): 123102.

[57] Bruylants T, Blinder D, Ottevaere H, et al. Microscopic off-axis holographic image compression with JPEG 2000[J]. Proceedings of SPIE, 2014, 9138: 91380F.

[58] Xing YF, Pesquet-PopescuB, DufauxF. Compression of computer generated hologram based on phase-shifting algorithm[C]∥European Workshop on Visual Information Processing (EUVIP), June 10-12, 2013, Paris, France. New York: IEEE, 2013: 172- 177.

[59] Xing Y F, Pesquet-Popescu B, Dufaux F. Compression of computer generated phase-shifting hologram sequence using AVC and HEVC[J]. Proceedings of SPIE, 2013, 8856: 88561M.

[60] Xing YF, Pesquet-PopescuB, DufauxF. Comparative study of scalar and vector quantization on different phase-shifting digital holographic data representations[C]∥2014 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), July 2-4, 2014, Budapest, Hungary. New York: IEEE, 2014: 14515719.

[61] Xing Y F, Kaaniche M, Pesquet-Popescu B, et al. Vector lifting scheme for phase-shifting holographic data compression[J]. Optical Engineering, 2014, 53(11): 112312.

[62] Xing Y F, Kaaniche M, Pesquet-Popescu B, et al. Adaptive nonseparable vector lifting scheme for digital holographic data compression[J]. Applied Optics, 2015, 54(1): A98-A109.

[63] Kim S C, Dong X B, Kwon M W, et al. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table[J]. Optics Express, 2013, 21(9): 11568-11584.

[64] Dong X B, Kim S C, Kim E S. MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects[J]. Optics Express, 2014, 22(7): 8047-8067.

[65] Kwon M W, Kim S C, Kim E S. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes[J]. Applied Optics, 2016, 55(3): A22-A31.

[66] BlinderD, AharA, SymeonidouA, et al. Open access database for experimental validations of holographic compression engines[C]∥2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX), May 26-29, 2015, Pylos-Nestoras, Greece. New York: IEEE, 2015: 15260774.

[67] PeixeiroJ, BritesC, AscensoJ, et al. Digital holography: benchmarking coding standards and representation formats[C]∥2016 IEEE International Conference on Multimedia and Expo (ICME), July 11-15, 2016, Seattle, WA, USA. New York: IEEE, 2016: 16266860.

[68] MurgiaF, GiustoD. A database for evaluating the quality of experience in light field applications[C]∥2016 24th Telecommunications Forum (TELFOR), November 22-23, 2016, Belgrade, Serbia. New York: IEEE, 2016: 16603192.

[69] Peixeiro J P, Brites C, Ascenso J, et al. Holographic data coding: benchmarking and extending HEVC with adapted transforms[J]. IEEE Transactions on Multimedia, 2018, 20(2): 282-297.

姜智翔, 桂进斌, 王国庆, 金晓宇. 用于三维显示的全息压缩技术概述[J]. 激光与光电子学进展, 2019, 56(24): 240001. Zhixiang Jiang, Jinbin Gui, Guoqing Wang, Xiaoyu Jin. Overview of Holographic-Compression Technology for Three-Dimensional Display[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!