Photonics Research, 2017, 5 (4): 04000280, Published Online: Oct. 10, 2018  

Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays Download: 819次

Author Affiliations
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
3 University of Chinese Academy of Sciences, Beijing 100039, China
4 Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
5 Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
6 e-mail: gjtao@siom.ac.cn
Copy Citation Text

Zhengyuan Bai, Guiju Tao, Yuanxin Li, Jin He, Kangpeng Wang, Gaozhong Wang, Xiongwei Jiang, Jun Wang, Werner Blau, Long Zhang. Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays[J]. Photonics Research, 2017, 5(4): 04000280.

References

[1] S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen. Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. ACS Nano, 2012, 6: 979-985.

[2] P. C. Tseng, M. A. Tsai, P. Yu, H. C. Kuo. Antireflection and light trapping of subwavelength surface structures formed by colloidal lithography on thin film solar cells. Prog. Photovoltaics, 2012, 20: 135-142.

[3] M. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, N. I. Zheludev. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater., 2011, 23: 5540-5544.

[4] W. Li, J. Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Lett., 2014, 14: 3510-3514.

[5] W. P. McConnell, J. P. Novak, L. C. Brousseau, R. R. Fuierer, R. C. Tenent, D. L. Feldheim. Electronic and optical properties of chemically modified metal nanoparticles and molecularly bridged nanoparticle arrays. J. Phys. Chem. B, 2000, 104: 8925-8930.

[6] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo. Nanostructured plasmonic sensors. Chem. Rev., 2008, 108: 494-521.

[7] Y. Li, G. Duan, G. Liu, W. Cai. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: fabrication and applications. Chem. Soc. Rev., 2013, 42: 3614-3627.

[8] A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, M. V. Pishko. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir, 2001, 17: 5440-5447.

[9] C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, H. Launois. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci., 2000, 164: 111-117.

[10] C. L. Haynes, R. P. Van Duyne. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B, 2001, 105: 5599-5611.

[11] Y. Li, W. Cai, G. Duan. Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. Chem. Mater., 2008, 20: 615-624.

[12] W.-G. Yan, J.-W. Qi, Z.-B. Li, J.-G. Tian. Fabrication and optical properties of Au-coated polystyrene nanosphere arrays with controlled gaps. Plasmonics, 2014, 9: 565-571.

[13] J. Wang, G. Duan, G. Liu, Y. Li, Z. Dai, H. Zhang, W. Cai. Gold quasi rod-shaped nanoparticle-built hierarchically micro/nanostructured pore array via clean electrodeposition on a colloidal monolayer and its structurally enhanced SERS performance. J. Mater. Chem., 2011, 21: 8816-8821.

[14] T. Minami. Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes. Thin Solid Films, 2008, 516: 5822-5828.

[15] S. Szunerits, V. G. Praig, M. Manesse, R. Boukherroub. Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology, 2008, 19: 195712.

[16] G. Duan, W. Cai, Y. Luo, Y. Li, Y. Lei. Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering. Appl. Phys. Lett., 2006, 89: 181918.

[17] Z. Dai, Y. Li, G. Duan, L. Jia, W. Cai. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface. ACS Nano, 2012, 6: 6706-6716.

[18] H. Kim, C. Gilmore, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, D. Chrisey. Electrical, optical, and structural properties of indium-tin–oxide thin films for organic light-emitting devices. J. Appl. Phys., 1999, 86: 6451-6461.

[19] W.-G. Yan, C.-L. Luo, J. Zhao, M.-L. Guo, Q. Ye, Z.-B. Li, J.-G. Tian. Fabrication of Au nanoparticle composite TiO2 shell arrays by controlled decomposition of polymer particles. Superlattices Microstruct., 2014, 75: 371-377.

[20] K. Y. Kim, S. B. Park. Preparation and property control of nano-sized indium tin oxide particle. Mater. Chem. Phys., 2004, 86: 210-221.

[21] D. T. Danielson, D. K. Sparacin, J. Michel, L. C. Kimerling. Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration. J. Appl. Phys., 2006, 100: 083507.

[22] W. W. Mullins. Theory of thermal grooving. J. Appl. Phys., 1957, 28: 333-339.

[23] D. Wang, P. Schaaf. Thermal dewetting of thin Au films deposited onto line-patterned substrates. J. Mater. Sci., 2012, 47: 1605-1608.

[24] U. Smith, N. Kristensen, F. Ericson, J. Å. Schweitz. Local stress relaxation phenomena in thin aluminum films. J. Vac. Sci. Technol. A, 1991, 9: 2527-2535.

[25] M. Dufay, O. Pierre-Louis. Anisotropy and coarsening in the instability of solid dewetting fronts. Phys. Rev. Lett., 2011, 106: 105506.

[26] O. Mryasov, A. J. Freeman. Electronic band structure of indium tin oxide and criteria for transparent conducting behavior. Phys. Rev. B, 2001, 64: 233111.

[27] T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, J. Feldmann. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater., 2010, 22: 1805-1825.

[28] Q. Fu, W. Sun. Mie theory for light scattering by a spherical particle in an absorbing medium. Appl. Opt., 2001, 40: 1354-1361.

[29] JacksonJ. D., Classical Electrodynamics (Wiley, 1999).

[30] S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, D. Aspnes. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett., 2009, 34: 2867-2869.

[31] R. Philip, P. Chantharasupawong, H. Qian, R. Jin, J. Thomas. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett., 2012, 12: 4661-4667.

[32] B. Taheri, H. Liu, B. Jassemnejad, D. Appling, R. C. Powell, J. Song. Intensity scan and two photon absorption and nonlinear refraction of C60 in toluene. Appl. Phys. Lett., 1996, 68: 1317-1319.

[33] Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, J. Wang. Giant two-photon absorption in monolayer MoS2. Laser Photon. Rev., 2015, 9: 427-434.

[34] G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, T. Goodson. Quantum-sized gold clusters as efficient two-photon absorbers. J. Am. Chem. Soc., 2008, 130: 5032-5033.

[35] M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 1990, 26: 760-769.

[36] R. Schroeder, B. Ullrich. Absorption and subsequent emission saturation of two-photon excited materials: theory and experiment. Opt. Lett., 2002, 27: 1285-1287.

Zhengyuan Bai, Guiju Tao, Yuanxin Li, Jin He, Kangpeng Wang, Gaozhong Wang, Xiongwei Jiang, Jun Wang, Werner Blau, Long Zhang. Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays[J]. Photonics Research, 2017, 5(4): 04000280.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!