光学学报, 2016, 36 (10): 1026005, 网络出版: 2016-10-12   

基于光取向液晶的光场调控技术 下载: 1126次

Beam Shaping Based on Photopatterned Liquid Crystals
作者单位
南京大学固体微结构物理国家重点实验室, 现代工程与应用科学学院,人工微结构科学与技术协同创新中心, 江苏 南京 210093
引用该论文

陈鹏, 徐然, 胡伟, 陆延青. 基于光取向液晶的光场调控技术[J]. 光学学报, 2016, 36(10): 1026005.

Chen Peng, Xu Ran, Hu Wei, Lu Yanqing. Beam Shaping Based on Photopatterned Liquid Crystals[J]. Acta Optica Sinica, 2016, 36(10): 1026005.

参考文献

[1] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299-313.

[2] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

[3] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[4] Siviloglou G, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.

[5] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[6] Yalizay B, Soylu B, Akturk S. Optical element for generation of accelerating Airy beams[J]. Journal of the Optical Society of America A, 2010, 27(10): 2344-2346.

[7] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5-6): 321-327.

[8] Machavariani G, Lumer Y, Moshe I, et al. Efficient extracavity generation of radially and azimuthally polarized beams[J]. Optics Letters, 2007, 32(11): 1468-1470.

[9] Polynkin P, Kolesik M, Moloney J V, et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 2009, 324(5924): 229-232.

[10] Cao R, Yang Y, Wang J, et al. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency[J]. Applied Physics Letters, 2011, 99(26): 261106.

[11] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139-150.

[12] Zhou J X, Liu Y C, Ke Y G, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 2015, 40(13): 3193-3196.

[13] Beresna M, Gecevicius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101.

[14] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202-1206.

[15] Kitzerow H S. Polymer-dispersed liquid crystals from the nematic curvilinear aligned phase to ferroelectric films[J]. Liquid Crystals, 1994, 16(1): 1-31.

[16] Ren H W, Lin Y H, Wu S T. Linear to axial or radial polarization conversion using a liquid crystal gel[J]. Applied Physics Letters, 2006, 89(5): 051114.

[17] Luo D, Dai H T, Sun X W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal[J]. Optics Express, 2013, 21(25): 31318-31323.

[18] Ge S J, Ji W, Cui G X, et al. Fast switchable optical vortex generator based on blue phase liquid crystal fork grating[J]. Optical Materials Express, 2014, 4(12): 2535-2541.

[19] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes[J]. Nature Communications, 2013, 4: 2289.

[20] Chen J, Bos P J, Vithana H, et al. Electro-optically controlled liquid crystal diffraction grating[J]. Applied Physics Letters, 1995, 67(18): 2588-2590.

[21] Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23): 1948-1950.

[22] Kim J H, Yoneya M, Yokoyama H. Tristable nematic liquid-crystal device using micropatterned surface alignment[J]. Nature, 2002, 420(6912): 159-162.

[23] Wen B, Petschek R G, Rosenblatt C. Nematic liquid-crystal polarization gratings by modification of surface alignment[J]. Applied Optics, 2002, 41(7): 1246-1250.

[24] Honma M, Nose T. Polarization-independent liquid crystal grating fabricated by microrubbing process[J]. Japanese Journal of Applied Physics, 2003, 42(11): 6992-6997.

[25] Schadt M, Schmitt K, Kozinkov V, et al. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers[J]. Japanese Journal of Applied Physics, 1992, 31(7R): 2155-2164.

[26] Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal[J]. Nature, 1996, 381: 212-215.

[27] Hu W, Srivastava A K, Lin X W, et al. Polarization independent liquid crystal gratings based on orthogonal photoalignments[J]. Applied Physics Letters, 2012, 100(11): 111116.

[28] Blinov L M, Barberi R, Cipparrone G, et al. Liquid crystal orientation by holographic phase gratings recorded on photosensitive Langmuir-Blodgett films[J]. Liquid Crystals, 1999, 26(3): 427-436.

[29] Provenzano C, Pagliusi P, Cipparrone G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces[J]. Applied Physics Letters, 2006, 89(12): 121105.

[30] Li Y M, Kim J, Escuti M J. Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings[J]. Applied Optics, 2012, 51(34): 8236-8245.

[31] Culbreath C, Glazar N, Yokoyama H. Note: automated maskless micro-multidomain photoalignment[J]. Review of Scientific Instruments, 2011, 82(12): 126107.

[32] Wu H, Hu W, Hu H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system[J]. Optics Express, 2012, 20(15): 16684-16689.

[33] Miskiewicz M N, Escuti M J. Direct-writing of complex liquid crystal patterns[J]. Optics Express, 2014, 22(10): 12691-12706.

[34] Chen P, Lu Y Q, Hu W. Beam shaping via photopatterned liquid crystals[J]. Liquid Crystals, 2016, DOI:10.1080/02678292.2016.1191685.

[35] Akiyama H, Kawara T, Takada H, et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells[J]. Liquid Crystals, 2002, 29(10): 1321-1327.

[36] Chigrinov V, Pikin S, Verevochnikov A, et al. Diffusion model of photoaligning in azo-dye layers[J]. Physical Review E, 2004, 69(6): 061713.

[37] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

[38] Wei B Y, Hu W, Ming Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals[J]. Advanced Materials, 2014, 26(10): 1590-1595.

[39] Lin X W, Hu W, Hu X K, et al. Fast response dual-frequency liquid crystal switch with photo-patterned alignments[J]. Optics Letters, 2012, 37(17): 3627-3629.

[40] Berry M V. The adiabatic phase and Pancharatnam′s phase for polarized light[J]. Journal of Modern Optics, 1987, 34(11): 1401-1407.

[41] Nersisyan S, Tabiryan N, Steeves D, et al. Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching[J]. Journal of Nonlinear Optical Physics & Materials, 2009, 18(1): 1-47.

[42] Du T, Fan F, Tam A M W, et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer[J]. Advanced Materials, 2015, 27(44): 7191-7195.

[43] Duan W, Chen P, Wei B Y, et al. Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating[J]. Optical Materials Express, 2016, 6(2): 597-602.

[44] Chen H, Weng Y, Xu D, et al. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate[J]. Optics Express, 2016, 24(7): 7287-7298.

[45] Chen P, Wei B Y, Ji W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Research, 2015, 3(4): 133-139.

[46] Lei T, Zhang M, Li Y, et al. Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings[J]. Light: Science & Applications, 2015, 4: e257.

[47] Liu J, Min C, Lei T, et al. Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray[J]. Optics Express, 2016, 24(1): 212-218.

[48] Ge S J, Chen P, Ma L L, et al. Optical array generator based on blue phase liquid crystal Dammann grating[J]. Optical Materials Express, 2016, 6(4): 1087-1092.

[49] Fu S Y, Zhang S K, Wang T L, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices[J]. Optics Express, 2016, 24(6): 6240-6248.

[50] Chen P, Ge S J, Ma L L, et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals[J]. Physical Review Applied, 2016, 5(4): 044009.

[51] Zhou C H, Liu L R. Numerical study of Dammann array illuminators[J]. Applied Optics, 1995, 34(26): 5961-5969.

[52] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

[53] Slussarenko S, Murauski A, Du T, et al. Tunable liquid crystal q-plates with arbitrary topological charge[J]. Optics Express, 2011, 19(5): 4085-4090.

[54] Ji W, Lee C H, Chen P, et al. Meta-q-plate for complex beam shaping[J]. Scientific Reports, 2016, 6: 25528.

[55] Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 2007, 32(24): 3549-3551.

[56] Liu S, Li P, Peng T, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Optics Express, 2012, 20(19): 21715-21721.

[57] Chen P, Ji W, Wei B Y, et al. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates[J]. Applied Physics Letters, 2015, 107(24): 241102.

[58] Ko S W, Ting C L, Fuh A Y G, et al. Polarization converters based on axially symmetric twisted nematic liquid crystal[J]. Optics Express, 2010, 18(4): 3601-3607.

[59] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10: 327-332.

[60] Wei B Y, Chen P, Hu W, et al. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask[J]. Scientific Reports, 2015, 5: 17484.

[61] Wu S T. Birefringence dispersions of liquid crystals[J]. Physical Review A, 1986, 33(2): 1270.

[62] Wang L, Lin X W, Liang X, et al. Large birefringence liquid crystal material in terahertz range[J]. Optical Materials Express, 2012, 2(10): 1314-1319.

[63] Wei B Y, Chen P, Ge S J, et al. Liquid crystal depolarizer based on photoalignment technology[J]. Photonics Research, 2016, 4(2): 70-73.

[64] Wang L, Lin X W, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light: Science & Applications, 2015, 4: e253.

[65] Ma L L, Li S S, Li W S, et al. Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals[J]. Advanced Optical Materials, 2015, 3(12): 1691-1696.

[66] Ma Y, Wei B, Shi L, et al. Fork gratings based on ferroelectric liquid crystals[J]. Optics Express, 2016, 24(6): 5822-5828.

[67] Ke Y, Liu Y, Zhou J, et al. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens[J]. Applied Physics Letters, 2016, 108(10): 101102.

陈鹏, 徐然, 胡伟, 陆延青. 基于光取向液晶的光场调控技术[J]. 光学学报, 2016, 36(10): 1026005. Chen Peng, Xu Ran, Hu Wei, Lu Yanqing. Beam Shaping Based on Photopatterned Liquid Crystals[J]. Acta Optica Sinica, 2016, 36(10): 1026005.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!