中国激光, 2019, 46 (5): 0508013, 网络出版: 2019-11-11   

非线性环路反射镜锁模光纤激光器的研究进展 下载: 7821次

Research Advances in Mode-Locked Fiber Lasers Based on Nonlinear Loop Mirror
作者单位
1 中国科学院上海光学精密机械研究所, 上海 201800
2 上海频准激光科技有限公司, 上海 201800
引用该论文

周佳琦, 潘伟巍, 张磊, GuXijia, 冯衍. 非线性环路反射镜锁模光纤激光器的研究进展[J]. 中国激光, 2019, 46(5): 0508013.

Jiaqi Zhou, Weiwei Pan, Lei Zhang, Xijia Gu, Yan Feng. Research Advances in Mode-Locked Fiber Lasers Based on Nonlinear Loop Mirror[J]. Chinese Journal of Lasers, 2019, 46(5): 0508013.

参考文献

[1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.

[2] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

[3] Fermann M E, Hartl I. Ultrafast fiber lasers[J]. Nature Photonics, 2013, 7: 868-874.

[4] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92.

[5] Zhang H, Bao Q L, Tang D Y, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker[J]. Applied Physics Letters, 2009, 95(14): 141103.

[6] Turitsyn S K, Bale B G, Fedoruk M P. Dispersion-managed solitons in fibre systems and lasers[J]. Physics Reports, 2012, 521(4): 135-203.

[7] Oktem B, Ülgüdür C, Ilday F Ö. Soliton-similariton fibre laser[J]. Nature Photonics, 2010, 4(5): 307-311.

[8] Renninger W H, Chong A, Wise F W. Dissipative solitons in normal-dispersion fiber lasers[J]. Physical Review A, 2008, 77(2): 023814.

[9] Okhotnikov O, Grudinin A, Pessa M. Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications[J]. New Journal of Physics, 2004, 6: 177.

[10] Wang F, Rozhin A G, Scardaci V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser[J]. Nature Nanotechnology, 2008, 3(12): 738-742.

[11] Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[12] Matsas V J, Newson T P, Richardson D J, et al. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391.

[13] Liu Z W, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649-654.

[14] Pan W W, Zhou J Q, Zhang L, et al. Rectangular pulse generation from a mode locked Raman fiber laser[J]. Journal of Lightwave Technology, 2019, 37(4): 1333-1337.

[15] Zhou J Q, Pan W W, Gu X J, et al. Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber[J]. Optics Express, 2018, 26(4): 4166-4171.

[16] Szczepanek J. Karda T M, Radzewicz C, et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[J]. Optics Letters, 2017, 42(3): 575-578.

[17] Sidorenko P, Fu W, Wright L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 2018, 43(11): 2672-2675.

[18] Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58.

[19] Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754.

[20] Duling I N. Subpicosecond all-fibre erbium laser[J]. Electronics Letters, 1991, 27(6): 544-545.

[21] Duling I N. All-fiber ring soliton laser mode locked with a nonlinear mirror[J]. Optics Letters, 1991, 16(8): 539-541.

[22] Dennis M L, Duling I N. Experimental study of sideband generation in femtosecond fiber lasers[J]. IEEE Journal of Quantum Electronics, 1994, 30(6): 1469-1477.

[23] Nakazawa M, Yoshida E, Kimura Y. Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes[J]. Applied Physics Letters, 1991, 59(17): 2073-2075.

[24] Feng X H, Tam H Y, Liu H L, et al. Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror[J]. Optics Communications, 2006, 268(2): 278-281.

[25] Ilday F Ö, Wise F W, Sosnowski T. High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror[J]. Optics Letters, 2002, 27(17): 1531-1533.

[26] Pottiez O, Ibarra-Escamilla B, Kuzin E A, et al. Generation of high-energy pulses from an all-normal-dispersion figure-8 fiber laser[J]. Laser Physics, 2010, 20(3): 709-715.

[27] Zhao L M, Bartnik A C, Tai Q Q, et al. Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror[J]. Optics Letters, 2013, 38(11): 1942-1944.

[28] Aguergaray C, Hawker R. Runge A F J, et al. 120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser[J]. Applied Physics Letters, 2013, 103(12): 121111.

[29] Aguergaray C. Broderick N G R, Erkintalo M, et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J]. Optics Express, 2012, 20(10): 10545-10551.

[30] Runge A F J, Aguergaray C, Provo R, et al. . All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror[J]. Optical Fiber Technology, 2014, 20(6): 657-665.

[31] Bowen P, Singh H, Runge A, et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser at 1060nm[J]. Optics Communications, 2016, 364: 181-184.

[32] Zhou J Q, Gu X J. 32-nJ 615-fs stable dissipative soliton ring cavity fiber laser with Raman scattering[J]. IEEE Photonics Technology Letters, 2016, 28(4): 453-456.

[33] Zhou JQ, Gu XJ. 50.5 nJ, 750 fs all-fiber all polarization-maintaining fiber laser[C]. CLEO: Science and Innovations, 2015: SM3P. 1.

[34] Kuse N, Jiang J, Lee C C, et al. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror[J]. Optics Express, 2016, 24(3): 3095-3102.

[35] Hänsel W, Hoogland H, Giunta M, et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation[J]. Applied Physics B, 2017, 123: 41.

[36] Liu G Y, Jiang X H, Wang B, et al. 313 MHz repetition rate mode-locked Yb∶fiber laser with phase-biased nonlinear amplifying loop mirror[J]. Laser Physics Letters, 2017, 14(8): 085103.

[37] Liu G Y, Jiang X H, Wang A M, et al. Robust 700 MHz mode-locked Yb∶fiber laser with a biased nonlinear amplifying loop mirror[J]. Optics Express, 2018, 26(20): 26003-26009.

[38] Liu W, Shi H S, Cui J H, et al. Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror[J]. Optics Letters, 2018, 43(12): 2848-2851.

[39] Lezius M, Wilken T, Deutsch C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381-1387.

[40] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

[41] Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

[42] 杨松, 郝强, 曾和平. 非线性放大环形镜被动锁模光纤激光器重复频率精确锁定研究[J]. 中国激光, 2018, 45(8): 0801007.

    Yang S, Hao Q, Zeng H P. Repetition rate precision lock of nonlinear amplifying loop mirror passively mode-locked fiber laser[J]. Chinese Journal of Lasers, 2018, 45(8): 0801007.

[43] Chen F. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 2014, 8(2): 251-275.

[44] 胡小豹, 郝强, 郭政儒, 等. 全光纤皮秒激光切割蓝宝石晶圆的实验研究[J]. 中国激光, 2017, 44(1): 102016.

    Hu X B, Hao Q, Guo Z R, et al. Dicing of sapphire wafer with all-fiber picosecond laser[J]. Chinese Journal of Lasers, 2017, 44(1): 102016.

[45] 孙若愚, 谭方舟, 金东臣, 等. 基于色散波的1 μm飞秒光纤啁啾脉冲放大系统[J]. 中国激光, 2018, 45(1): 0101001.

    Sun R Y, Tan F Z, Jin D C, et al. 1 μm femtosecond fiber chirped pulse amplification system based on dispersion wave[J]. Chinese Journal of Lasers, 2018, 45(1): 0101001.

[46] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

[47] 寇宽, 赵国忠, 刘英, 等. 利用太赫兹时域光谱同时确定样品厚度和折射率[J]. 中国激光, 2015, 42(8): 0815001.

    Kou K, Zhao G Z, Liu Y, et al. Simultaneously determinations of sample thickness and refractive index by terahertz time-domain spectroscopy[J]. Chinese Journal of Lasers, 2015, 42(8): 0815001.

[48] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1): 124-166.

周佳琦, 潘伟巍, 张磊, GuXijia, 冯衍. 非线性环路反射镜锁模光纤激光器的研究进展[J]. 中国激光, 2019, 46(5): 0508013. Jiaqi Zhou, Weiwei Pan, Lei Zhang, Xijia Gu, Yan Feng. Research Advances in Mode-Locked Fiber Lasers Based on Nonlinear Loop Mirror[J]. Chinese Journal of Lasers, 2019, 46(5): 0508013.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!