红外与激光工程, 2019, 48 (4): 0405002, 网络出版: 2019-07-23  

泵浦线宽和波长飘移对全固态Tm激光器性能的影响

Influence of pump bandwidth and wavelength-drift on laser performance of solid-state Tm laser
作者单位
1 中国科学院福建物质结构研究所 光电材料化学和物理重点实验室, 福建 福州 350002
2 中国科学院大学, 北京 100049
引用该论文

王娟, 黄海洲, 黄见洪, 葛燕, 戴殊韬, 邓晶, 林紫雄, 翁文, 林文雄. 泵浦线宽和波长飘移对全固态Tm激光器性能的影响[J]. 红外与激光工程, 2019, 48(4): 0405002.

Wang Juan, Huang Haizhou, Huang Jianhong, Ge Yan, Dai Shutao, Deng Jing, Lin Zixiong, Weng Wen, Lin Wenxiong. Influence of pump bandwidth and wavelength-drift on laser performance of solid-state Tm laser[J]. Infrared and Laser Engineering, 2019, 48(4): 0405002.

参考文献

[1] Ji E, Liu Q, Cao X, et al. Resonantly fiber-coupled diode-pumped Ho3+: YLiF4 laser in continuous-wave and Q-switched operation[J]. IEEE Journal of Quantum Electronics, 2016, 52(7): 1-8.

[2] Lamrini S, Koopmann P, Sch 覿fer M, et al. Efficient high-power Ho: YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm[J]. Applied Physics B, 2012, 106(2): 315-319.

[3] Huang H, Huang J, Liu H, et al. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser[J]. Optics Express, 2018, 26(5): 5758-5768.

[4] Huang H, Huang J, Liu H, et al. High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode[J]. Laser Physics Letters, 2016, 13(9): 095001.

[5] Fan T Y, Huber G, Byer R L, et al. Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho: Y3Al5O12 laser at 300 K[J]. Optics Letters, 1987, 12(9): 678-680.

[6] Gao C, Gao M, Zhang Y, et al. Stable single-frequency output at 2.01 μm from a diode-pumped monolithic double diffusion-bonded Tm: YAG nonplanar ring oscillator at room temperature[J]. Optics Letters, 2009, 34(19): 3029-3031.

[7] Fan T Y, Huber G, Byer R L, et al. Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 924-933.

[8] Scholle K, Lamrini S, Koopmann P, et al. 2 滋m laser sources and their possible applications[C]//Frontiers in Guided Wave Optics and Optoelectronics. InTech, 2010: 10.5772/39538.

[9] Koch G J, Dharamsi A N, Fitzgerald C M, et al. Frequency stabilization of a Ho: Tm: YLF laser to absorption lines of carbon dioxide[J]. Applied Optics, 2000, 39(21): 3664-3669.

[10] Theisen D, Ott V, Bernd H W, et al. CW high power IR-laser at 2 μm for minimally invasive surgery[C]//European Conference on Biomedical Optics. Optical Society of America, 2003: 5142_96.

[11] Liu J, Shen D, Huang H, et al. Highly efficient Tm-doped yttrium aluminum garnet ceramic laser based on the novel fiber-bulk hybrid configuration[J]. Applied Physics Express, 2013, 6(9): 092107.

[12] Elder I F, Payne M J P. Lasing in diode-pumped Tm: YAP, Tm, Ho: YAP and Tm, Ho: YLF[J]. Optics Communications, 1998, 145(1-6): 329-339.

[13] Sato A, Asai K, Itabe T. Double-pass-pumped Tm: YAG laser with a simple cavity configuration[J]. Applied Optics, 1998, 37(27): 6395-6400.

[14] Rustad G, Stenersen K. Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion[J]. IEEE Journal of Quantum Electronics, 1996, 32(9): 1645-1656.

[15] Zhu H, Zhang Y, Zhang J, et al. 1.96 μm Tm:YAG ceramic laser[J]. IEEE Photonics Journal, 2017, 9(6): 1506607.

[16] Wu C, Ju Y, Li Y, et al. Diode-pumped Tm: LuAG laser at room temperature[J]. Chinese Optics Letters, 2008, 6(6): 415-416.

[17] Yu H, Petrov V, Griebner U, et al. Compact passively Q-switched diode-pumped Tm: LiLuF4 laser with 1.26 mJ output energy[J]. Optics Letters, 2012, 37(13): 2544-2546.

[18] Soulard R, Tyazhev A, Doualan J L, et al. 2.3 μm Tm3+: YLF mode-locked laser[J]. Optics Letters, 2017, 42(18): 3534-3536.

[19] Zhang Haikun, Huang Jiyang, Zhou Cheng, et al. CW mode-locked Tm:YAP laser with semiconductor saturable-absorber at around 2 μm[J]. Infrared and Laser Engineering, 2018, 47(5): 0505003. (in Chinese)

[20] Yumoto M, Saito N, Urata Y, et al. 128 mJ/Pulse, laser-diode-pumped, Q-switched Tm: YAG laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 364-368.

[21] Zhan M J, Zou Y W, Lin Q F, et al. Ti:sapphire pumped passively mode-locked Tm:YAG ceramic laser [J]. Acta Physica Sinica, 2014, 63(1): 014205. (in Chinese)

[22] Cao D, Peng Q, Du S, et al. A 200 W diode-side-pumped CW 2 μm Tm: YAG laser with water cooling at 8 ℃[J]. Applied Physics B, 2011, 103(1): 83-88.

[23] Beach R J, Sutton S B, Skidmore J A, et al. High-power 2-μm wing-pumped Tm:YAG laser[C]//Conference on Lasers and Electro-Optics, 1996: 319.

[24] Honea E C, Beach R J, Sutton S B, et al. 115-W Tm: YAG diode pumped solid state laser[J]. IEEE Journal of Quantum Electronics, 1997, 33(9): 1592-1600.

[25] Zhang X F, Xu Y T, Li C M, et al. A continuous-wave diode-side-pumped Tm:YAG laser with ouput 51 W [J]. Chinese Physics Letters, 2008, 25(10): 3673-3675.

[26] Wang C, Niu Y, Du S, et al. High power diode side pumped rod Tm: YAG laser at 2.07 μm[J]. Applied Optics, 2013, 52(31): 7494-7497.

[27] Eichhorn M. Quasi three level solid state lasers in the near and mid infrared based on trivalent rare earth ions[J]. Applied Physics B, 2008, 93(2-3): 269.

[28] Eichhom M, Kieleck C, Hirth A. OP-GaAs OPO pumped by a Q-switched Tm, Ho:Silica fiber laser [C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009: CWH2.

[29] Cheng X, Shang J, Jiang B. Analysis of the thermal effects in diode-pumped Tm: YAG ceramic slab lasers[J]. Laser Physics, 2017, 27(3): 035803.

[30] Huang H Z, Huang J H, Liu H G, et al. High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode[J]. Laser Physics Letters, 2016, 13(9): 095001.

[31] Honea E C, Beach R J, Sutton S B, et al. 115-W Tm: YAG diode-pumped solid-state laser[J]. IEEE Journal of Quantum Electronics, 1997, 33(9): 1592-1600.

[32] Caird J, Deshazer L, Nella J. Characteristics of room-temperature 2.3- 滋m laser emission from Tm3+ in YAG and YAlO3[J]. IEEE Journal of Quantum Electronics, 1975, 11(11): 874-881.

[33] Li B, Ding X, Sun B, et al. 12.45 W wavelength-locked 878.6 nm laser diode in-band pumped multisegmented Nd: YVO4 laser operating at 1342 nm[J]. Applied Optics, 2014, 53(29): 6778-6781.

[34] Scholle K, Fuhrberg P. In-band pumping of high-power Ho: YAG lasers by laser diodes at 1.9 滋m[C]//Conference on Lasers and Electro-optics. Optical Society of America, 2008: CTuAA1.

[35] Zhang Haiwei, Sheng Quan, Shi Wei, et al. Thermal distribution characteristic of high-power laser double-cladding thulium-doped fiber amplifier[J]. Infrared and Laser Engineering, 2017, 46(6): 0622004.

[36] Cheng X, Shang J, Jiang B. Analysis of the thermal effects in diode-pumped Tm: YAG ceramic slab lasers[J]. Laser Physics, 2017, 27(3): 035803.

[37] Pfistner C, Weber R, Weber H P, et al. Thermal beam distortions in end-pumped Nd: YAG, Nd: GSGG, and Nd: YLF rods[J]. IEEE Journal of Quantum Electronics, 1994, 30(7): 1605-1615.

[38] Huang H, Gao P, Liu H G, et al. Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(3): 034221.

[39] Chen X, Wu J, Wu C, et al. Analysis of thermal effects in a pulsed laser diode end pumped single-ended composite Tm: YAG laser[J]. Laser Physics, 2015, 25(4): 045003.

王娟, 黄海洲, 黄见洪, 葛燕, 戴殊韬, 邓晶, 林紫雄, 翁文, 林文雄. 泵浦线宽和波长飘移对全固态Tm激光器性能的影响[J]. 红外与激光工程, 2019, 48(4): 0405002. Wang Juan, Huang Haizhou, Huang Jianhong, Ge Yan, Dai Shutao, Deng Jing, Lin Zixiong, Weng Wen, Lin Wenxiong. Influence of pump bandwidth and wavelength-drift on laser performance of solid-state Tm laser[J]. Infrared and Laser Engineering, 2019, 48(4): 0405002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!