Frontiers of Optoelectronics, 2019, 12 (4): 344–351, 网络出版: 2020-01-09  

Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells

Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells
作者单位
Michael Gratzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
引用该论文

Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Frontiers of Optoelectronics, 2019, 12(4): 344–351.

Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Frontiers of Optoelectronics, 2019, 12(4): 344–351.

参考文献

[1] Rong Y, Ming Y, Ji W, Li D, Mei A, Hu Y, Han H. Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. Journal of Physical Chemistry Letters, 2018, 9(10): 2707–2713

[2] Somalu M R, Muchtar A, Daud W R W, Brandon N P. Screenprinting inks for the fabrication of solid oxide fuel cell films: a review. Renewable & Sustainable Energy Reviews, 2017, 75: 426– 439

[3] Miller F L. Paste Transfer in the Screening Process. SAE Technical Paper Series, 1968, 680796

[4] Towards a better understanding of screen print thickness control: R. J. Horwood. Electrocomponent Science and Technology. 1, 129 (1974). Microelectronics Reliability, 1975, 14(3): 284

[5] Sp?th M, Sommeling P M, van Roosmalen J A M, Smit H J P, van der Burg N P G, Mahieu D R, Bakker N J, Kroon J M. Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline. Progress in Photovoltaics: Research and Applications, 2003, 11(3): 207–220

[6] Wenham S R, Green M A. Silicon solar cells. Progress in Photovoltaics: Research and Applications, 1996, 4(1): 3–33

[7] Ito S, Murakami T N, Comte P, Liska P, Gratzel C, Nazeeruddin M K, Gratzel M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613–4619

[8] O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

[9] agfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dyesensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663

[10] Hinsch A, Brandt H, Veurman W, Hemming S, Nittel M, Würfel U, Putyra P, Lang-Koetz C, Stabe M, Beucker S. Dye solar modules for facade applications: recent results from project ColorSol. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 820–824

[11] Hinsch A, Veurman W, Brandt H, Loayza Aguirre R, Bialecka K, Flarup Jensen K.Worldwide first fully up-scaled fabrication of 60  100 cm2 dye solar module prototypes. Progress in Photovoltaics: Research and Applications, 2012, 20(6): 698–710

[12] Pettersson H, Gruszecki T, Schnetz C, Streit M, Xu Y, Sun L, Gorlov M, Kloo L, Boschloo G, H?ggman L, Hagfeldt A. Parallelconnected monolithic dye-sensitised solar modules. Progress in Photovoltaics: Research and Applications, 2010, 18(5): 340–345

[13] Rong Y, Liu G, Wang H, Li X, Han H. Monolithic all-solid-state dye-sensitized solar cells. Frontiers of Optoelectronics, 2013, 6(4): 359–372

[14] Kato N, Takeda Y, Higuchi K, Takeichi A, Sudo E, Tanaka H, Motohiro T, Sano T, Toyoda T. Degradation analysis of dyesensitized solar cell module after long-term stability test under outdoor working condition. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 893–897

[15] Dai S,Weng J, Sui Y, Chen S, Xiao S, Huang Y, Kong F, Pan X, Hu L, Zhang C, Wang K. The design and outdoor application of dyesensitized solar cells. Inorganica Chimica Acta, 2008, 361(3): 786– 791

[16] Takeda Y, Kato N, Higuchi K, Takeichi A, Motohiro T, Fukumoto S, Sano T, Toyoda T. Monolithically series-interconnected transparent modules of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 808–811

[17] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

[18] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(1): 591

[19] YangWS, Park BW, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379

[20] Bi D, Yi C, Luo J, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Gratzel M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016, 1(10): 16142

[21] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H, Han H. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaata8235

[22] Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y. Solar cell efficiency tables (Version 53). Progress in Photovoltaics: Research and Applications, 2019, 27 (1): 3–12

[23] Rong Y, Liu L, Mei A, Li X, Han H. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066

[24] Hu Y, Si S, Mei A, Rong Y, Liu H, Li X, Han H. Stable large-area (10  10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL, 2017, 1(2): 1600019

[25] Rong Y, Hou X, Hu Y, Mei A, Liu L, Wang P, Han H. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8: 14555

[26] Yin G, Ma J, Jiang H, Li J, Yang D, Gao F, Zeng J, Liu Z, Liu S F. Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Applied Materials & Interfaces, 2017, 9(16): 14545

[27] Jiang Y, LeydenMR, Qiu L,Wang S, Ono L K,Wu Z, Juarez-Perez E J, Qi Y. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Advanced Functional Materials, 2018, 28(1): 1703835

[28] Liu T, Chen K, Hu Q, Zhu R, Gong Q. Inverted perovskite solar cells: progresses and perspectives. Advanced Energy Materials, 2016, 6(17): 1600457

[29] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396): 1442–1446

[30] Ku Z, Rong Y, Xu M, Liu T, Han H. Full printable processed mesoscopic CH?NH?PbI?/TiO? heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3(1): 3132

[31] De Rossi F, Baker J A, Beynon D, Hooper K E A, Meroni S M P, Williams D, Wei Z, Yasin A, Charbonneau C, Jewell E H, Watson T M. All printable perovskite solar modules with 198 cm2 active area and over 6% efficiency. Advanced Materials Technologies, 2018, 3 (11): 1800156

[32] Baranwal A K, Kanaya S, Peiris T A N, Mizuta G, Nishina T, Kanda H, Miyasaka T, Segawa H, Ito S. 100°C thermal stability of printable perovskite solar cells using porous carbon counter electrodes. ChemSusChem, 2016, 9(18): 2604–2608

[33] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K. One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8: 15684

[34] Chan C Y, Wang Y, Wu G W, Wei-Guang Diau E. Solventextraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(10): 3872–3878

[35] Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A, Han H. Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293: 533–538

[36] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R,Witten T A. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829

[37] Lin H W, Chang C P, Hwu W H, Ger M D. The rheological behaviors of screen-printing pastes. Journal of Materials Processing Technology, 2008, 197(1–3): 284–291

Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Frontiers of Optoelectronics, 2019, 12(4): 344–351. Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Frontiers of Optoelectronics, 2019, 12(4): 344–351.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!