激光与光电子学进展, 2018, 55 (3): 030601, 网络出版: 2018-09-10   

基于八维调制格式的变速率方法 下载: 834次

Rate-Adaptive Scheme Based on Eight-Dimensional Modulation Formats
作者单位
吉林大学通信工程学院, 吉林 长春 130012
引用该论文

段净化, 胡贵军. 基于八维调制格式的变速率方法[J]. 激光与光电子学进展, 2018, 55(3): 030601.

Jinghua Duan, Guijun Hu. Rate-Adaptive Scheme Based on Eight-Dimensional Modulation Formats[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030601.

参考文献

[1] 宣贺君, 王宇平, 徐展琦, 等. 弹性光网络中考虑节点安全性的频谱分配算法[J]. 中国激光, 2016, 43(12): 1206002.

    Xuan H J, Wang Y P, Xu Z Q, et al. Node security-aware spectrum allocation algorithm in elastic optical networks[J]. Chinese Journal of Lasers, 2016, 43(12): 1206002.

[2] 江祥奎, 赵峰, 范永青, 等. 考虑串扰的多纤芯弹性光网络中的频谱分配算法[J]. 激光与光电子学进展, 2017, 54(6): 060601.

    Jiang X K, Zhao F, Fan Y Q, et al. Frequency assignment algorithm for elastic optical network with multi-cores considering crosstalk[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060601.

[3] 宣贺君, 王宇平, 徐展琦, 等. 多纤芯弹性光网络中纤芯选择算法[J]. 光学学报, 2016, 36(12): 1206005.

    Xuan H J, Wang Y P, Xu Z Q, et al. Core selection algorithm for multi-core elastic optical networks[J]. Acta Optica Sinica, 2016, 36(12): 1206005.

[4] Gringeri S, Bitar N, Xia T J. Extending software defined network principles to include optical transport[J]. IEEE Communications Magazine, 2013, 51(3): 32-40.

[5] RobertsK, LaperleC. Flexible transceivers[C]. IEEE 38th European Conference and Exhibition on Optical Communications (ECOC), 2012: 14028857.

[6] Bosco G, Curri V, Carena A. et al. On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers[J]. Journal of Lightwave Technology, 2011, 29(1): 53-61.

[7] Winzer P J. High-spectral-efficiency optical modulation formats[J]. Journal of Lightwave Technology, 2012, 30(24): 3824-3835.

[8] Teipen B, Eiselt M H, Grobe K. et al. Adaptive data rates for flexible transceivers in optical networks[J]. Journal of Networks, 2012, 7(5): 776-782.

[9] Zhuge QB, XuX, Morsy-OsmanM, et al. Time domain hybrid QAM based rate-adaptive optical transmissions using high speed DACs[C]. Optical Fiber Communication Conference, Optical Society of America, 2013: OTh4E. 6.

[10] Guiomar F P, Li R X. Fludger C R S, et al. Hybrid modulation formats enabling elastic fixed-grid optical networks[J]. Journal of Optical Communications and Networking, 2016, 8(7): A92-A100.

[11] van den BorneD, Jansen SL. Dynamic capacity optimization using flexi-rate transceiver technology[C]. 17th IEEE Opto-Electronics and Communications Conference (OECC), 2012: 769- 770.

[12] Zhou X, Nelson L E, Magill P. Rate-adaptable optics for next generation long-haul transport networks[J]. IEEE Communications Magazine, 2013, 51(3): 41-49.

[13] Zhou X, Nelson L E, Magill P. et al. High spectral efficiency 400 Gb/s transmission using PDM time-domain hybrid 32-64 QAM and training-assisted carrier recovery[J]. Journal of Lightwave Technology, 2013, 31(7): 999-1005.

[14] Gho G H, Klak L, Kahn J M. Rate-adaptive coding for optical fiber transmission systems[J]. Journal of Lightwave Technology, 2011, 29(2): 222-233.

[15] Gho G H, Kahn J M. Rate-adaptive modulation and coding for optical fiber transmission systems[J]. Journal of Lightwave Technology, 2012, 30(12): 1818-1828.

[16] Gho G H, Kahn J M. Rate-adaptive modulation and low-density parity-check coding for optical fiber transmission systems[J]. Journal of Optical Communications and Networking, 2012, 4(10): 760-768.

[17] Arabaci M, Djordjevic I B, Saunders R. et al. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks[J]. Optics Express, 2010, 18(3): 1820-1832.

[18] ArabaciM, Djordjevic IB, SchmidtT, et al. Rate-adaptive nonbinary-LDPC-coded modulation with back propagation for long-haul optical transport networks[C]. IEEE 12th International Conference on Transparent Optical Networks (ICTON), 2010: 11475238.

[19] Arabaci M, Djordjevic I B, Xu L. et al. Nonbinary LDPC-coded modulation for rate-adaptive optical fiber communication without bandwidth expansion[J]. IEEE Photonics Technology Letters, 2012, 24(16): 1402-1404.

[20] Fischer J K, Schmidt-Langhorst C, Alreesh S. et al. Generation, transmission, and detection of 4-D set-partitioning QAM signals[J]. Journal of Lightwave Technology, 2015, 33(7): 1445-1451.

[21] RenaudierJ, Bertran-PardoO, GhazisaeidiA, et al. Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud[C]. IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013: 13582316.

[22] Fischer J K, Alreesh S, Elschner R. et al. Bandwidth-variable transceivers based on four-dimensional modulation formats[J]. Journal of Lightwave Technology, 2014, 32(16): 2886-2895.

[23] He Z L, Liu W T, Shen B L. et al. Flexible multidimensional modulation formats based on PM-QPSK constellations for elastic optical networks[J]. Chinese Optics Letters, 2016, 14(4): 040602.

[24] Zhang YQ, ArabaciM, DjordjevicI. Rate-adaptive four-dimensional nonbinary LDPC-coded modulation for long-haul optical transport networks[C]. National Fiber Optic Engineers Conference, Optical Society of America, 2012: JW2A. 46.

[25] Alreesh S, Schmidt-Langhorst C, Emmerich R. et al. Four-dimensional trellis coded modulation for flexible optical communications[J]. Journal of Lightwave Technology, 2017, 35(2): 152-158.

[26] Kashero E L, Hu G J, Song Z X. Increased dimensionality of SP-MQAM modulation higher than 4D to 8D[J]. Optics Communications, 2017, 396: 15-18.

[27] Ishimura S, Kikuchi K. Multi-dimensional permutation-modulation format for coherent optical communications[J]. Optics Express, 2015, 23(12): 15587-15597.

[28] Millar D S, Koike-Akino T, Arık S Ö. et al. High-dimensional modulation for coherent optical communications systems[J]. Optics Express, 2014, 22(7): 8798-8812.

[29] Conway JH, Sloane N J A. Sphere packings, lattices and groups[M]. New York: Springer Science & Business Media, 2013.

[30] Koike-AkinoT, Millar DS, KojimaK, et al. Eight-dimensional modulation for coherent optical communications[C]. IET 39th European Conference and Exhibition on Optical Communication (ECOC 2013), 2013: 13841929.

段净化, 胡贵军. 基于八维调制格式的变速率方法[J]. 激光与光电子学进展, 2018, 55(3): 030601. Jinghua Duan, Guijun Hu. Rate-Adaptive Scheme Based on Eight-Dimensional Modulation Formats[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030601.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!