激光技术, 2018, 42 (5): 588, 网络出版: 2018-09-11   

机载激光测深技术的研究进展

Research process of airborne laser bathymetry
作者单位
1 东华大学 信息科学与技术学院, 上海 201620
2 上海大恒光学精密机械有限公司, 上海 201899
引用该论文

张熠星, 尚建华, 贺岩. 机载激光测深技术的研究进展[J]. 激光技术, 2018, 42(5): 588.

ZHANG Yixing, SHANG Jianhua, HE Yan. Research process of airborne laser bathymetry[J]. Laser Technology, 2018, 42(5): 588.

参考文献

[1] ZHANG L. The air-born blue-green laser radar for water depth information acquisition and processing methods research [D]. Dalian: Dalian Maritime University, 2016: 1-5(in Chinese).

[2] YE X S. Research on principle and data processing methods of airborne laser bathymetric technique [D]. Zhengzhou: PLA Information Engincering University, 2010: 1-2(in Chinese).

[3] REN L P, ZHAO J Sh, ZHAI G J, et al. Scanning-track computation and analysis for airborne laser depth sounding [J].Geomatics and Information Science of Wuhan University, 2002, 27(2): 138-142(in Chinese).

[4] ZHAI G J, HUANG M T, OUYANG Y Zh, et al. Key techologies related to the development of airborne laser bathymetry system [J]. Hydrographic Surveying and Charting, 2014, 34(3): 73-76(in Ch-inese).

[5] YANG H Y, LIANG Y H. Present situation and prospect of the bathymetry technology of airborne blue-green laser system for searching underwater objects [J]. Ome Information, 2013(12): 6-10(in Ch-inese).

[6] FENG W B. Application in transmission underwater of blue and green laser [J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2000, 19(1): 53-55(in Chinese).

[7] WAGNER W, ULLRICH A, DUCIC V, et al. Gaussian decomposition calibration of a novel small-footprint full-waveform digitizing airborne laser scanner [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 100-112.

[8] ALLOUIS T, BAILLY B S, PASTOL Y, et al. Comparison of lidar waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals [J]. Earth Surface Processes Land, 2010, 35(6): 640-650.

[9] ABADY L, BAILLY J S, BAGHDADI N, et al. Column contribution in lidar waveforms on bathymetry estimates [J]. Geoscience and Remote Sensing Letters, 2014, 11(4): 813-817.

[10] XU G C. Research on airborne lidar waveform data processing and classifying [D]. Nanjing: Najing Forestry University, 2010: 13-17(in Chinese).

[11] YOUNG J P, SANG W D, HONG J K. Deconvolution of long-pulse LiDAR signals with matrix formulation [J]. Technical Note Applied Optics, 1997, 36(21): 5158-5161.

[12] DOUGLASS A R, SCHOEBERL M R, KAWA S R, et al. Acomposite view of ozone evolution in the 1995-1996 northen winter polar vortex develope from airborne LiDAR and satellite observations [J]. Journal of Geophysical Research, 2001, 106(D9): 9879-9895.

[13] NEELAMANI R. NOWAK R, BARANIUK R. Model-based inverse halftoning with wavelet-vaguelette deconvolution [J]. International Comference on Image Processing, 2002, 3(3): 973-976.

[14] BAHRAMPOUR A R, ASKARI A A. Fourier-wavelet regularized deconvolution(ForWaRD) for lidar systems based on TE-CO2 laser [J]. Optics Communications, 2006, 257(1): 97-111.

[15] JUTZI B, STILLA U. Range determination with waveform recording laser systems using a Wiener Filter [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2): 95-107.

[16] WU J, van AARDT J, ASNER G P. Acomparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2402-2414.

[17] HARTMAN M, KENNEDY A B. Depth of closure over large regions using airborne bathymetric lidar [J]. Marine Gology, 2016, 379: 52-63.

[18] HALLERMEIER R J. A profile zonation for seasonal sand beaches from wave climate [J]. Coastal Engineering, 1981, 4(3): 253-277.

[19] BIRKEMEIER W A. Field data on seaward limit of profile change [J]. Waterway Ports Harbor Coastal Ocean Engineering ASCE, 1985, 111(3): 598-602.

[20] NICHOLLS R J, BIRKEMEIER W A, LEE G H. Evaluation of depth of closure using data from Duck, NC, USA [J]. Marine Geology, 1998, 148(1): 179-201.

[21] ROBERTSON W, ZHANG K, WHITMAN D. Hurricane-induced beach change derived from airborne laser measurements near Panama City, Florida [J]. Marine Geology, 2007, 237(3): 191-205.

[22] RICHTER K, MAAS H G, WESTFELD P, et al. An approach to determining turbidity and correcting for signal attenuation in airborne lidar bathymetry[J].PFG-Journal of Photogrammetry Remote Sensing & Geoinformation Science, 2017, 85(1): 31-40.

[23] WANG Z H. Research and application of laser technique in navy [J]. Optoelectronic Technology and Information, 1998, 11(6): 29-34(in Chinese).

[24] ZHU X, YANG K Ch, XU Q Y, et al. Airborne laser bathymetry phenomenological LiDAR equation [J]. Chinese Journal of Lasers, 1996, 22(3): 273-278(in Chinese).

[25] HUANG M T, ZHAI G J, OUYANG Y Zh, et al. Wave correction in airborne laser hydrography [J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 389-392(in Chinese).

[26] WANG Y. Current status and development of airborne laser bathymetry technology [J]. Journal of Geomatics, 2014, 39(3): 39-43(in Chinese).

张熠星, 尚建华, 贺岩. 机载激光测深技术的研究进展[J]. 激光技术, 2018, 42(5): 588. ZHANG Yixing, SHANG Jianhua, HE Yan. Research process of airborne laser bathymetry[J]. Laser Technology, 2018, 42(5): 588.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!