Photonics Research, 2021, 9 (4): 0400B104, Published Online: Apr. 6, 2021  

Real-time deep learning design tool for far-field radiation profile

Author Affiliations
1 Department of Electrical and Systems Engineering, Washington University, St Louis, Missouri 63130, USA
2 Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
3 Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
Copy Citation Text

Jinran Qie, Erfan Khoram, Dianjing Liu, Ming Zhou, Li Gao. Real-time deep learning design tool for far-field radiation profile[J]. Photonics Research, 2021, 9(4): 0400B104.

References

[1] D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-propagating errors. Nature, 1986, 323: 533-536.

[2] K. Hornik, M. Stinchcombe, H. White. Multilayer feedforward networks are universal approximators. Neural Netw., 1989, 2: 359-366.

[3] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA, 1982, 79: 2554-2558.

[4] N. H. Farhat, D. Psaltis, A. Prata, E. Paek. Optical implementation of the Hopfield model. Appl. Opt., 1985, 24: 1469-1475.

[5] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 2017, 11: 441-446.

[6] M. Hermans, M. Burm, T. Van Vaerenbergh, J. Dambre, P. Bienstman. Trainable hardware for dynamical computing using error backpropagation through physical media. Nat. Commun., 2015, 6: 6729.

[7] P. Seliger, M. Mahvash, C. Wang, A. F. J. Levi. Optimization of aperiodic dielectric structures. J. Appl. Phys., 2006, 100: 034310.

[8] A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, S. G. Johnson. Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides. Opt. Express, 2012, 20: 21558-21575.

[9] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vučković. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 2015, 9: 374-377.

[10] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint. Nat. Photonics, 2015, 9: 378-382.

[11] P. R. Wiecha, O. L. Muskens. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett., 2019, 20: 329-338.

[12] Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, W. Cai. Generative model for the inverse design of metasurfaces. Nano Lett., 2018, 18: 6570-6576.

[13] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 2018, 12: 6326-6334.

[14] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl., 2018, 7: 60.

[15] L. Gao, X. Li, D. Liu, L. Wang, Z. Yu. A bidirectional deep neural network for accurate silicon color design. Adv. Mater., 2019, 31: 1905467.

[16] BalanisC. A., Antenna Theory Analysis and Design (Wiley, 2005).

[17] P. Bharadwaj, B. Deutsch, L. Novotny. Optical antennas. Adv. Opt. Photon., 2009, 1: 438-483.

[18] L. Novotny, N. Van Hulst. Antennas for light. Nat. Photonics, 2011, 5: 83-90.

[19] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 2014, 13: 139-150.

[20] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 2013, 339: 1232009.

[21] D. Lin, P. Fan, E. Hasman, M. L. Brongersma. Dielectric gradient metasurface optical elements. Science, 2014, 345: 298-302.

[22] K. Umashankar, A. Taflove. A novel method to analyze electromagnetic scattering of complex objects. IEEE Trans. Electromagn. Compat., 1982, EMC-24: 397-405.

[23] X. Li, A. Taflove, V. Backman. Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects. IEEE Antennas Wireless Propag. Lett., 2005, 4: 35-38.

[24] W. Shin, S. Fan. Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys., 2012, 231: 3406-3431.

[25] J. A. Stratton, L. J. Chu. Diffraction theory of electromagnetic waves. Phys. Rev., 1939, 56: 99.

[26] Center for High Throughput Computing, http://chtc.cs.wisc.edu/.

[27] XuB.WangN.ChenT.LiM., “Empirical evaluation of rectified activations in convolutional network,” arXiv:1505.00853 (2015).

[28] Hecht-NielsenR., “Theory of the backpropagation neural network,” in Neural Networks for Perception (Academic, 1992), pp. 6593.

[29] IsolaP.ZhuJ. Y.ZhouT.EfrosA. A., “Image-to-image translation with conditional adversarial networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 11251134.

[30] https://github.com/JRQie/Web-demo-for-far-field-pattern.

[31] D. Liu, Y. Tan, E. Khoram, Z. Yu. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon., 2018, 5: 1365-1369.

[32] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, M. Soljačić. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 2018, 4: eaar4206.

Jinran Qie, Erfan Khoram, Dianjing Liu, Ming Zhou, Li Gao. Real-time deep learning design tool for far-field radiation profile[J]. Photonics Research, 2021, 9(4): 0400B104.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!