Photonics Research, 2017, 5 (6): 06000684, Published Online: Dec. 7, 2017  

Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials Download: 737次

Author Affiliations
1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
2 Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
3 e-mail: zhuwg88@163.com
4 Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
5 e-mail: ttguanheyuan@jnu.edu.cn
Copy Citation Text

Wenguo Zhu, Mengjiang Jiang, Heyuan Guan, Jianhui Yu, Huihui Lu, Jun Zhang, Zhe Chen. Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials[J]. Photonics Research, 2017, 5(6): 06000684.

References

[1] F. H. L. Koppens, D. E. Chang, F. J. García De Abajo. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett., 2011, 11: 3370-3377.

[2] J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, A. B. Kuzmenko. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nat. Commun., 2017, 8: 14626.

[3] S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol., 2015, 10: 682-686.

[4] T. Q. Tran, S. Lee, H. Heo, S. Kim. Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection. Sci. Rep., 2016, 6: 19975.

[5] A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, F. H. L. Koppens. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater., 2014, 14: 421-425.

[6] D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, A. B. Khanikaev. Trapping and guiding surface plasmons in curved graphene landscapes. ACS Photon., 2016, 3: 875-880.

[7] H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, J. Tian. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces. Adv. Opt. Mater., 2015, 3: 1744-1749.

[8] N. Mohammadi Estakhri, A. Alù. Wave-front transformation with gradient metasurfaces. Phys. Rev. X, 2016, 6: 41008.

[9] X. He, P. Gao, W. Shi. A further comparison of graphene and thin metal layers for plasmonics. Nanoscale, 2016, 8: 10388-10397.

[10] Y. Chang, C. Liu, C. Liu, S. Zhang, S. R. Marder. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun., 2016, 7: 10568.

[11] O. Hosten, P. Kwiat. Observation of the spin hall effect of light via weak measurements. Science, 2008, 319: 787-790.

[12] K. Y. Bliokh, A. Aiello. Goos–Hänchen and Imbert–Fedorov beam shifts: an overview. J. Opt., 2013, 15: 14001.

[13] H. Luo, X. Zhou, W. Shu, S. Wen, D. Fan. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Phys. Rev. A, 2011, 84: 43806.

[14] J. B. Götte, W. Löffler, M. R. Dennis. Eigenpolarizations for giant transverse optical beam shifts. Phys. Rev. Lett., 2014, 112: 233901.

[15] J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, Y. Li. Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface. Appl. Phys. Lett., 2015, 107: 111105.

[16] X. Tan, X. Zhu. Enhancing photonic spin Hall effect via long-range surface plasmon resonance. Opt. Lett., 2016, 41: 2478-2481.

[17] T. Tang, C. Li, L. Luo. Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide. Sci. Rep., 2016, 6: 30762.

[18] W. Zhu, W. She. Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab. Opt. Lett., 2015, 40: 2961-2964.

[19] W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, Z. Chen. The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface. Sci. Rep., 2017, 7: 1150.

[20] K. Y. Bliokh, I. V. Shadrivov, Y. S. Kivshar. Goos–Hänchen and Imbert–Fedorov shifts of polarized vortex beams. Opt. Lett., 2009, 34: 389-391.

[21] M. Merano, N. Hermosa, J. P. Woerdman, A. Aiello. How orbital angular momentum affects beam shifts in optical reflection. Phys. Rev. A, 2010, 82: 023817.

[22] A. Aiello. Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective. New J. Phys., 2012, 14: 013058.

[23] Z. Xiao, H. Luo, S. Wen. Goos–Hänchen and Imbert–Fedorov shifts of vortex beams at air left-handed-material interfaces. Phys. Rev. A, 2012, 85: 33-35.

[24] X. Wang, H. Wang, F. Zheng. Properties of group delay for photon tunneling through dispersive metamaterial barriers. Opt. Commun., 2017, 382: 371-376.

[25] J. Zhang, Z. Luo, H. Luo, S. Wen. Steering asymmetric spin splitting in photonic spin Hall effect by orbital angular momentum. Acta Opt. Sin., 2013, 33: 1126002.

[26] X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, E. Pickwell-MacPherson. Graphene based terahertz light modulator in total internal reflection geometry. Adv. Opt. Mater., 2016, 3: 1600697.

[27] J. Zhang, W. Liu, Z. Zhu, X. Yuan, S. Qin. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light. Sci. Rep., 2016, 6: 38086.

[28] W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, Z. Chen. Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial. Opt. Express, 2017, 25: 5196-5205.

[29] X. Qiu, Z. Zhang, L. Xie, J. Qiu, F. Gao, J. Du. Incident-polarization-sensitive and large in-plane-photonic-spin-splitting at the Brewster angle. Opt. Lett., 2015, 40: 1018-1021.

[30] C. Paterson. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett., 2005, 94: 153901.

Wenguo Zhu, Mengjiang Jiang, Heyuan Guan, Jianhui Yu, Huihui Lu, Jun Zhang, Zhe Chen. Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials[J]. Photonics Research, 2017, 5(6): 06000684.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!