Photonics Research, 2019, 7 (9): 09001061, Published Online: Aug. 26, 2019   

30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration Download: 715次

Linyong Yang 1†Ying Li 2Bin Zhang 1,3,4†Tianyi Wu 1Yijun Zhao 1,3,4Jing Hou 1,3,4,*
Author Affiliations
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 Center for Teaching and Research Service, National University of Defense Technology, Changsha 410073, China
3 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
4 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
Copy Citation Text

Linyong Yang, Ying Li, Bin Zhang, Tianyi Wu, Yijun Zhao, Jing Hou. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration[J]. Photonics Research, 2019, 7(9): 09001061.

References

[1] M. N. Islam, M. J. Freeman, L. M. Peterson, K. Ke, A. Ifarraguerri, C. Bailey, F. Baxley, M. Wager, A. Absi, J. Leonard, H. Baker, M. Rucci. Field tests for round-trip imaging at a 1.4  km distance with change detection and ranging using a short-wave infrared super-continuum laser. Appl. Opt., 2016, 55: 1584-1602.

[2] A. Mukherjee, S. Von der Porten, C. K. N. Patel. Standoff detection of explosive substances at distances of up to 150  m. Appl. Opt., 2010, 49: 2072-2078.

[3] H. T. Bekman, J. Van Den Heuvel, F. Van Putten, R. Schleijpen. Development of a mid-infrared laser for study of infrared countermeasures techniques. Proc. SPIE, 2004, 5615: 27-38.

[4] X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, J. Hou. High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016  nm. Opt. Lett., 2018, 43: 1019-1022.

[5] K. Yin, R. Zhu, B. Zhang, T. Jiang, S. Chen, J. Hou. Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications. Opt. Express, 2016, 24: 20010-20020.

[6] X. Zou, T. Izumitani. Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses. J. Non-Cryst. Solids, 1993, 162: 68-80.

[7] C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, J. Mauricio. 10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation. IEEE J. Sel. Top. Quantum Electron., 2009, 15: 422-434.

[8] L. Yang, B. Zhang, D. Jin, T. Wu, X. He, Y. Zhao, J. Hou. All-fiberized, multi-watt 2-5-μm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency. Opt. Lett., 2018, 43: 5206-5209.

[9] R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm. Proc. SPIE, 2013, 8898: 889808.

[10] C. Yao, Z. Jia, Z. Li, S. Jia, Z. Zhao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, W. Qin. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica, 2018, 5: 1264-1270.

[11] Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, R. Wang. 1.5–14  μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. Opt. Lett., 2016, 41: 5222-5225.

[12] K. Guo, R. A. Martinez, G. Plant, L. Maksymiuk, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, R. Bedford, R. Gibson, F. Chenard, S. Chatigny, A. I. Ifarraguerri. Generation of near-diffraction-limited, high-power supercontinuum from 1.57  μm to 12  μm with cascaded fluoride and chalcogenide fibers. Appl. Opt., 2018, 57: 2519-2532.

[13] J. Swiderski. High-power mid-infrared supercontinuum sources: current status and future perspectives. Prog. Quantum Electron., 2014, 38: 189-235.

[14] W. Yang, B. Zhang, G. Xue, K. Yin, J. Hou. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system. Opt. Lett., 2014, 39: 1849-1852.

[15] K. Liu, J. Liu, H. Shi, F. Tan, P. Wang. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power. Opt. Express, 2014, 22: 24384-24391.

[16] Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, J. Wang. Scaling all-fiber mid-infrared supercontinuum up to 10  W-level based on thermal-spliced silica fiber and ZBLAN fiber. Photon. Res., 2016, 4: 135-139.

[17] K. Yin, B. Zhang, L. Yang, J. Hou. 15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm. Opt. Lett., 2017, 42: 2334-2337.

[18] K. Yin, B. Zhang, L. Yang, J. Hou. 30  W monolithic 2–3  μm supercontinuum laser. Photon. Res., 2018, 6: 123-126.

[19] T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, J. Hou. Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber. Opt. Lett., 2019, 44: 2378-2381.

[20] K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, J. Hou. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers. Opt. Lett., 2016, 41: 946-949.

[21] F. R. Arteaga-Sierra, A. Antikainen, G. P. Agrawal. Dynamics of soliton cascades in fiber amplifiers. Opt. Lett., 2016, 41: 5198-5201.

Linyong Yang, Ying Li, Bin Zhang, Tianyi Wu, Yijun Zhao, Jing Hou. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration[J]. Photonics Research, 2019, 7(9): 09001061.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!