中国光学, 2017, 10 (5): 523, 网络出版: 2017-11-24   

超颖表面原理与研究进展

The principle and research progress of metasurfaces
作者单位
北京理工大学 光电学院,北京 100081
引用该论文

李天佑, 黄玲玲, 王涌天. 超颖表面原理与研究进展[J]. 中国光学, 2017, 10(5): 523.

LI Tian-you, HUANG Ling-ling, WANG Yong-tian. The principle and research progress of metasurfaces[J]. Chinese Optics, 2017, 10(5): 523.

参考文献

[1] YU N,CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials,2014,13(2):139-150.

[2] CHEN H,TAYLOR A J,YU N. A review of metasurfaces:physics and applications[J]. ArXiv:1605.07672,2016.

[3] SMITH D R,PENDRY J B,WILTSHIRE M. Metamaterials and negative refractive index[J]. Science,2004,305(5685):788-792.

[4] PENDRY J B,HOLDEN A J,STEWART W J,et al.. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters,1996,76(25):4773-4776.

[5] PENDRY J B,HOLDEN A J,ROBBINS D J,et al.. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084.

[6] SMITH D R,PADILLA W J,VIER D C,et al.. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters,2000,84(18):4184-4187.

[7] SHELBY R A,SMITH D R,SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science,2001,292(5514):77-79.

[8] ZHANG S,FAN W J,PANOIU N C,et al.. Experimental demonstration of near-infrared negative-index metamaterials[J]. Physical Review Letters,2005,95(13):137404.

[9] VALENTINE J,ZHANG S,ZENTGRAF T,et al.. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature,2008,455(7211):376-379.

[10] XIAO S,CHETTIAR U K,KILDISHEV A V,et al.. Yellow-light negative-index metamaterials[J]. Optics Letters,2009,34(22):3478-3480.

[11] SMITH D R,SCHULTZ S,MARKOS P,et al.. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B,2002,65(19):195104.

[12] SMITH D R,VIER D C,KOSCHNY T,et al.. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics,2005,71(3):142-154.

[13] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters,2000,85(18):3966-3969.

[14] FANG N,LEE H,SUN C,et al.. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science,2005,308(5721):534-537.

[15] PENDRY J B,SCHURIG D,SMITH D R. Controlling electromagnetic fields[J]. Science,2006,312(5781):1780-1782.

[16] LEONHARDT U. Optical conformal mapping[J]. Science,2006,312(5781):1777-1780.

[17] HOLLOWAY C L,KUESTER E F,GORDON J A,et al.. An overview of the theory and applications of metasurfaces:the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine,2012,54(2):10-35.

[18] KILDISHEV A V,BOLTASSEVA A,SHALAEV V M. Planar photonics with metasurfaces[J]. Science,2013,339(6125):1232009.

[19] YU N,GENEVET P,KATS M A,et al.. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science,2011,334(6054):333-337.

[20] YU N,AIETA F,GENEVET P,et al.. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters,2012,12(12):6328-6333.

[21] HUANG L,CHEN X,MHLENBERND H,et al.. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications,2013,4:2808.

[22] 黄玲玲.基于手性光场作用的超颖表面的相位调控特性及其应用[D].北京:清华大学,2014.

    HUANG L L. The phase modulation property of metasurfaces based on chiral field interaction and its applications[D]. Beijing:Tsinghua University,2014.(inChinese)

[23] BHARADWAJ P,DEUTSCH B,NOVOTNY L. Optical antennas[J]. Advances in Optics and Photonics,2009,1(3):438-483.

[24] NOVOTNY L,VAN HULST N. Antennas for light[J]. Nature Photonics,2011,5(2):83-90.

[25] KATS M A,GENEVET P,AOUST G,et al.. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences,2012,109(31):12364-12368.

[26] PFEIFFER C,GRBIC A. Metamaterial Huygens' surfaces:tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters,2013,110(19):197401.

[27] PFEIFFER C,EMANI N K,SHALTOUT A M,et al.. Efficient light bending with isotropic metamaterial Huygens' surfaces[J]. Nano Letters,2014,14(5):2491-2497.

[28] KIM M,WONG A M H,ELEFTHERIADES G V. Optical Huygens metasurfaces with independent control of the magnitude and phase of the local reflection coefficients[J]. Physical Review X,2014,4(4):041042.

[29] WANG Z,SHI J,CHEN J. High-efficiency electromagnetic wave controlling with all-dielectric Huygens'metasurfaces[J]. International J. Antennas and Propagation,2015:1-7.

[30] DECKER M,STAUDE I,FALKNER M,et al.. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials,2015,3(6):813-820.

[31] ZHAO W,JIANG H,LIU B,et al.. Dielectric Huygens'metasurface for high-efficiency hologram operating in transmission mode[J]. Scientific Reports,2016,6:30613.

[32] Generalized Theory of Interference and its Applications.Part 2:Partially Coherent Pencils[J]. Proceedings of Indian Academy of Sciences,1956,section A,4(6):398-417.

[33] BERRY M V. Quantal phase-factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,1984,392(1802):45-57.

[34] MENZEL C,ROCKSTUHL C,LEDERER F. An advanced jones calculus for the classification of periodic metamaterials[J]. Phys. Rev. A,2010,82(5):53811.

[35] ARMITAGE N P. Constraints on jones transmission matrices from time-reversal invariance and discrete spatial symmetries[J]. Physical Review B,2014,90(3):35135.

[36] KANG M,FENG T,WANG H T,et al.. Wave front engineering from an array of thin aperture antennas[J]. Optics Express,2012,20(14):15882-15890.

[37] HUANG L,CHEN X,M HLENBERND H,et al.. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters,2012,12(11):5750-5755.

[38] WANG B,DONG F,LI Q,et al.. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters,2016,16(8):5235-5240.

[39] FALCONE F,LOPETEGI T,LASO M,et al.. Babinet principle applied to the design of metasurfaces and metamaterials[J]. Physical Review Letters,2004,93(19):197401.

[40] ZENTGRAF T,MEYRATH T P,SEIDEL A,et al.. Babinet′S principle for optical frequency metamaterials and nanoantennas[J]. Physical Review B,2007,76(3):033407.

[41] CHEN H T,O'HARA J F,TAYLOR A J,et al.. Complementary planar terahertz metamaterials[J]. Opt Express,2007,15(3):1084-1095.

[42] POZAR D M,TARGONSKI S D,SYRIGOS H D. Design of millimeter wave microstrip reflectarrays[J]. IEEE Transactions on Antennas and Propagation,1997,45(2):287-296.

[43] 马科斯 玻恩,埃米尔沃尔夫.光学原理--光的传播、干涉和衍射的电磁理论(第七版)[M].北京:电子工业出版社,2009.

    BORN M,WOLF E. Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. Beijing:Electronic Industry Press,2009.(in Chinese)

[44] EVLYUKHIN A B,REINHARDT C,CHICHKOV B N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation[J]. Physical Review B,2011,84(23):235429.

[45] EVLYUKHIN A B,REINHARDT C,SEIDEL A,et al.. Optical response features of Si-nanoparticle arrays[J]. Physical Review B,2010,82(4):045404.

[46] ZHAO Q,KANG L,DU B,et al.. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Physical Review Letters,2008,101(2):027402.

[47] VYNCK K,FELBACQ D,CENTENO E,et al.. All-dielectric rod-type metamaterials at optical frequencies[J]. Physical Review Letters,2009,102(13):133901.

[48] ZHAO Q,ZHOU J,ZHANG F,et al.. Mie resonance-based dielectric metamaterials[J]. Materials Today,2009,12(12):60-69.

[49] PENG L,RAN L,CHEN H,et al.. Experimental observation of left-handed behavior in an array of standard dielectric resonators[J]. Physical Review Letters,2007,98(15):157403.

[50] GINN J C,BRENER I,PETERS D W,et al.. Realizing optical magnetism from dielectric metamaterials[J]. Physical Review Letters,2012,108(9):097402.

[51] CHENG J,ANSARI-OGHOL-BEIG D,MOSALLAEI H. Wave manipulation with designer dielectric metasurfaces[J]. Optics Letters,2014,39(21):6285-6288.

[52] CHONG K E,STAUDE I,JAMES A,et al.. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Letters,2015,15(8):5369-5374.

[53] YANG Y,WANG W,MOITRA P,et al.. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters,2014,14(3):1394-1399.

[54] ARBABI A,HORIE Y,BALL A J,et al.. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications,2015,6:7069.

[55] ARBABI A,HORIE Y,BAGHERI M,et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology,2015,10(11):937-943.

[56] LIN D,FAN P,HASMAN E,et al.. Dielectric gradient metasurface optical elements[J]. Science,2014,345(6194):298-302.

[57] AIETA F,GENEVET P,YU N,et al.. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters,2012,12(3):1702-1706.

[58] ZHANG X,TIAN Z,YUE W,et al.. Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities[J]. Advanced Materials,2013,25(33):4567-4572.

[59] SUN S,HE Q,XIAO S,et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials,2012,11(5):426-431.

[60] SUN S,YANG K,WANG C,et al.. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters,2012,12(12):6223-6229.

[61] 金国藩,严瑛白,邬敏贤.二元光学[M].北京:国防工业出版社,1998.

    JIN G F,YAN Y B,WU M X. Binary Optics[M]. Beijing:National Defense Industry Press,1998.(inChinese)

[62] MARCHAND E W. Gradient Index Optics[M]. New York:New York Academic Press,1978.

[63] AIETA F,GENEVET P,KATS M A,et al.. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters,2012,12(9):4932-4936.

[64] LI X,XIAO S,CAI B,et al.. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters,2012,37(23):4940-4942.

[65] NI X,ISHII S,KILDISHEV A V,et al.. Ultra-thin, planar, babinet-inverted plasmonic metalenses[J]. Light:Science & Applications,2013,2(4):e72.

[66] KUZNETSOV S A,ASTAFEV M A,BERUETE M,et al.. Planar holographic metasurfaces for terahertz focusing[J]. Scientific Reports,2015,5:7738.

[67] CHEN X,HUANG L,M HLENBERND H,et al.. Dual-polarity plasmonicmetalens for visible light[J]. Nature Communications,2012,3:1198.

[68] PORS A,NIELSEN M G,ERIKSEN R L,et al.. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters,2013,13(2):829-834.

[69] KHORASANINEJAD M,CHEN W T,DEVLIN R C,et al.. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science,2016,352(6290):1190-1194.

[70] KHORASANINEJAD M,AIETA F,KANHAIYA P,et al.. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters,2015,15(8):5358-5362.

[71] 谢敬辉,廖宁放,曹良才.傅里叶光学与现代光学基础[M].北京:北京理工大学出版社,2007.

    XIE J H,LIAO N F,CAO L C. Fundamentals of Fourier Optics and Contemporary Optics[M]. Beijing:Beijing Institute of Technology Press,2007.(inChinese)

[72] SLINGER C,CAMERON C,STANLEY M. Computer-generated holography as a generic display technology[J]. Computer,2005,38(8):46-53.

[73] KELLY D P,MONAGHAN D S,PANDEY N,et al.. Digital holographic capture and optoelectronic reconstruction for 3D displays[J]. International J. Digital Multimedia Broadcasting,2010,2010:1-14.

[74] GENG J. Three-dimensional display technologies[J]. Advances in Optics and Photonics,2013,5(4):456-535.

[75] WALTHER B,HELGERT C,ROCKSTUHL C,et al.. Spatial and spectral light shaping with metamaterials[J]. Advanced Materials,2012,24(47):6300-6304.

[76] NI X,KILDISHEV A V,SHALAEV V M. Metasurface holograms for visible light[J]. ,2013,4:2807.

[77] ZHENG G,M HLENBERND H,KENNEY M,et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology,2015,10(4):308-312.

[78] NI X,KILDISHEV A V,SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications,2013,4:2807.

[79] HUANG L,M HLENBERND H,LI X,et al.. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials,2015,27(41):6444-6449.

[80] HUANG Y,CHEN W T,TSAI W,et al.. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters,2015,15(5):3122-3127.

[81] KNIGHT M W,KING N S,LIU L,et al.. Aluminum for plasmonics[J]. ACS Nano,2014,8(1):834-840.

[82] KNIGHT M W,LIU L,WANG Y,et al.. Aluminum plasmonic nanoantennas[J]. Nano Letters,2012,12(11):6000-6004.

[83] PADGETT M,COURTIAL J,ALLEN L. Light's orbital angular momentum[J]. Physics Today,2004,57(5):35-40.

[84] ALLEN L,BEIJERSBERGEN M W,SPREEUWR,et al.. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A,1992,45(11):8185-8189.

[85] MOLINA-TERRIZA G,TORRES J P,TORNER L. Twisted photons[J]. Nature Physics,2007,3(5):305-310.

[86] VERBEECK J,TIAN H,SCHATTSCHNEIDER P. Production and application of electron vortex beams[J]. Nature,2010,467(7313):301-304.

[87] ZENG J,LI L,YANG X,et al.. Generating and separating twisted light by gradient rotation split-ring antenna metasurfaces[J]. Nano Letters,2016,16(5):3101-3108.

[88] LI S,WANG J. Simultaneous demultiplexing and steering of multiple orbital angular momentum modes[J]. Scientific Reports,2015,5:15406.

[89] REN H,LI X,ZHANG Q,et al.. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science,2016,352(6287):805-809.

[90] MEHMOOD M Q,MEI S,HUSSAIN S,et al.. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials,2016,28(13):2533-2539.

[91] MAGUID E,YULEVICH I,VEKSLER D,et al.. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science,2016,352(6290):1202-1206.

[92] ZHANG N,YUAN X C,BURGE R E. Extending the detection range of optical vortices by dammann vortex gratings[J]. Opt. Lett.,2010,35(20):3495-3497.

[93] LEI T,ZHANG M,LI Y,et al.. Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings[J]. Light: Science & Applications,2015,4(3):e257.

[94] YU J,ZHOU C,JIA W,et al.. Generation of dipole vortex array using spiral dammann zone plates[J]. Appl. Opt.,2012,51(28):6799-6804.

[95] YU J,ZHOU C,JIA W,et al.. Three-dimensional dammann array[J]. Appl. Opt.,2012,51(10):1619-1630.

[96] YU J,ZHOU C,JIA W,et al.. Three-dimensional dammann vortex array with tunable topological charge[J]. Appl. Opt.,2012,51(13):2485-2490.

[97] WANG D,GU Y,GONG Y,et al.. An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface[J]. Optics Express,2015,23(9):11114-11122.

[98] CONG L,XU N,GU J,et al.. Highly flexible broadband terahertz metamaterial quarter-wave plate[J]. Laser & Photonics Reviews,2014,8(4):626-632.

[99] LI Y,ZHANG J,QU S,et al.. Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces[J]. J. Applied Physic,2015,117(4):44501.

[100] SUN W,HE Q,HAO J,et al.. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters,2011,36(6):927-929.

[101] PFEIFFER C,GRBIC A. Bianisotropic metasurfaces for optimal polarization control:analysis and synthesis[J]. Physical Review Applied,2014,2(4):044011.

[102] PFEIFFER C,ZHANG C,RAY V,et al.. High performance bianisotropicmetasurfaces:asymmetric transmission of light[J]. Physical Review Letters,2014,113(2):023902.

[103] GRADY N K,HEYES J E,CHOWDHURY D R,et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science,2013,340(6138):1304-1307.

[104] CHEN H,WANG J,MA H,et al.. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J]. J. Applied Physics,2014,115(15):154504.

[105] DAI Y,REN W,CAI H,et al.. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express,2014,22(7):7465-7472.

[106] MINOVICH A E,MIROSHNICHENKO A E,BYKOV A Y,et al.. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews,2015,9(2):195-213.

[107] CUI Y,HE Y,JIN Y,et al.. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews,2014,8(4):495-520.

[108] GENEVET P,CAPASSO F. Holographic optical metasurfaces:a review of current progress[J]. Reports on Progress in Physics,2015,78(2):24401.

[109] GU J,SINGH R,LIU X,et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications,2012,3:1151.

[110] WATTS C M,SHREKENHAMER D,MONTOYA J,et al.. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics,2014,8(8):605-609.

[111] HUIDOBRO P A,KRAFT M,MAIER S A,et al.. Graphene as a tunable anisotropic or isotropic plasmonic metasurface[J]. ACS Nano,2016,10(5):5499-5506.

[112] DABIDIAN N,DUTTA-GUPTA S,KHOLMANOV I,et al.. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Letters,2016,16(6):3607-3615.

[113] LI Z,YU N. Modulation of mid-infrared light using graphene-metal plasmonic antennas[J]. Applied Physics Letters,2013,102(13):131108.

[114] KATS M A,BLANCHARD R,GENEVET P,et al.. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material[J]. Optics Letters,2013,38(3):368-370.

[115] YIN X,SCH FERLING M,MICHEL A U,et al.. Active chiral plasmonics[J]. Nano Letters,2015,15(7):4255-4260.

李天佑, 黄玲玲, 王涌天. 超颖表面原理与研究进展[J]. 中国光学, 2017, 10(5): 523. LI Tian-you, HUANG Ling-ling, WANG Yong-tian. The principle and research progress of metasurfaces[J]. Chinese Optics, 2017, 10(5): 523.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!