光学学报, 2018, 38 (7): 0702001, 网络出版: 2018-09-05   

锶光钟Zeeman减速器中截止速度对蓝磁光阱原子数的影响 下载: 1018次

Influence of Cut-off Speed on Atomic Number of Blue Magneto-Optical Trap in Zeeman Slower of Strontium Optical Clock
作者单位
1 中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
2 中国科学院大学, 北京 100049
引用该论文

韩建新, 卢晓同, 卢本全, 王叶兵, 孔德欢, 张首刚, 常宏. 锶光钟Zeeman减速器中截止速度对蓝磁光阱原子数的影响[J]. 光学学报, 2018, 38(7): 0702001.

Jianxin Han, Xiaotong Lu, Benquan Lu, Yebing Wang, Dehuan Kong, Shougang Zhang, Hong Chang. Influence of Cut-off Speed on Atomic Number of Blue Magneto-Optical Trap in Zeeman Slower of Strontium Optical Clock[J]. Acta Optica Sinica, 2018, 38(7): 0702001.

参考文献

[1] Ichiro U, Masao T, Manoj D, et al. Cryogenic optical lattice clocks[J]. Nature Photonics, 2015, 9(3): 185-189.

    Ichiro U, Masao T, Manoj D, et al. Cryogenic optical lattice clocks[J]. Nature Photonics, 2015, 9(3): 185-189.

[2] Ludlow A D, Boyd M M. J Ye. Optical atomic clocks[J]. Review of Modern Physics, 2015, 87(2): 637-692.

    Ludlow A D, Boyd M M. J Ye. Optical atomic clocks[J]. Review of Modern Physics, 2015, 87(2): 637-692.

[3] Akamatsu D, Inaba H, Hosaka K, et al. Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb [J]. Applied Physics Express, 2014, 7(1): 012401.

    Akamatsu D, Inaba H, Hosaka K, et al. Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb [J]. Applied Physics Express, 2014, 7(1): 012401.

[4] Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10 -18 instability [J]. Science, 2013, 341(6151): 1215-1218.

    Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10 -18 instability [J]. Science, 2013, 341(6151): 1215-1218.

[5] Targat R L, Lorini L, Coq Y L, et al. Experimental realization of an optical second with strontium lattice clocks[J]. Nature Communication, 2013, 4(1): 2109-2119.

    Targat R L, Lorini L, Coq Y L, et al. Experimental realization of an optical second with strontium lattice clocks[J]. Nature Communication, 2013, 4(1): 2109-2119.

[6] Akamatsu D, Yasuda M, Inaba H, et al. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks [J]. Optics Express, 2014, 22(7): 7898-7905.

    Akamatsu D, Yasuda M, Inaba H, et al. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks [J]. Optics Express, 2014, 22(7): 7898-7905.

[7] Will C M. The confrontation between general relativity and experiment a centenary perspective[J]. Living Reviews in Relativity, 2006, 9(3): 146-162.

    Will C M. The confrontation between general relativity and experiment a centenary perspective[J]. Living Reviews in Relativity, 2006, 9(3): 146-162.

[8] Kolkowitz S, Langellier N, Pikovski I, et al. Gravitational wave detection with optical lattice atomic clocks[J]. Physical Review D, 2016, 94(12): 124043.

    Kolkowitz S, Langellier N, Pikovski I, et al. Gravitational wave detection with optical lattice atomic clocks[J]. Physical Review D, 2016, 94(12): 124043.

[9] Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al + and Hg + single-ion optical clocks; metrology at the 17th decimal place [J]. Science, 2008, 319(5871): 1808-1812.

    Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al + and Hg + single-ion optical clocks; metrology at the 17th decimal place [J]. Science, 2008, 319(5871): 1808-1812.

[10] Lin Y G, Wang Q, Li Y, et al. Magnetic field induced spectroscopy of 88Sr atoms probed with a 10 Hz linewidth laser [J]. Chinese Physics Letters, 2013, 30(1): 014206.

    Lin Y G, Wang Q, Li Y, et al. Magnetic field induced spectroscopy of 88Sr atoms probed with a 10 Hz linewidth laser [J]. Chinese Physics Letters, 2013, 30(1): 014206.

[11] Campbell S L, Hutson R B. Marti1 G E, et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 2017, 358(6359): 90-94.

    Campbell S L, Hutson R B. Marti1 G E, et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 2017, 358(6359): 90-94.

[12] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10 -18 level [J]. Nature, 2014, 506(7486): 71-75.

    Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10 -18 level [J]. Nature, 2014, 506(7486): 71-75.

[13] Nicholson T L, Campbell S L, Hutson R B, et al. Systematic evaluation of an atomic clock at 2×10 -18 total uncertainty [J]. Nature Communications, 2015, 6(1): 6896.

    Nicholson T L, Campbell S L, Hutson R B, et al. Systematic evaluation of an atomic clock at 2×10 -18 total uncertainty [J]. Nature Communications, 2015, 6(1): 6896.

[14] 张文卓, 成华东, 马红玉, 等. 各向同性光场对原子束的分步减速[J]. 光学学报, 2007, 27(8): 1366-1370.

    张文卓, 成华东, 马红玉, 等. 各向同性光场对原子束的分步减速[J]. 光学学报, 2007, 27(8): 1366-1370.

    Zhang W Z, Cheng H D, Ma H Y, et al. Scheme of stepped slowing Rb atomic beams by isotropic laser light[J]. Acta Optica Sinica, 2007, 27(8): 1366-1370.

    Zhang W Z, Cheng H D, Ma H Y, et al. Scheme of stepped slowing Rb atomic beams by isotropic laser light[J]. Acta Optica Sinica, 2007, 27(8): 1366-1370.

[15] Raab E L, Prentiss M, Cable A, et al. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23): 2631-2634.

    Raab E L, Prentiss M, Cable A, et al. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23): 2631-2634.

[16] Phillips W D, Metcalf H. Laser deceleration of an atomic beam[J]. Physical Review Letters, 1982, 48(9): 596-599.

    Phillips W D, Metcalf H. Laser deceleration of an atomic beam[J]. Physical Review Letters, 1982, 48(9): 596-599.

[17] Xiong Z X, Long Y, Xiao H, et al. Maximized cooling efficiency for a Zeeman slower operating at optimized magnetic field profile[J]. Chinese Optics Letters, 2011, 9(1): 010201.

    Xiong Z X, Long Y, Xiao H, et al. Maximized cooling efficiency for a Zeeman slower operating at optimized magnetic field profile[J]. Chinese Optics Letters, 2011, 9(1): 010201.

[18] 王心亮, 马喆, 常宏, 等. 利用补偿线圈提高塞曼减速器效率的理论及实验研究[J]. 量子光学学报, 2011, 17(2): 124-129.

    王心亮, 马喆, 常宏, 等. 利用补偿线圈提高塞曼减速器效率的理论及实验研究[J]. 量子光学学报, 2011, 17(2): 124-129.

    Wang X L, Ma Z, Chang H, et al. Theoretical and experimental study rising Zeeman slower efficiency use compensatory coils[J]. Journal of Quantum Optics, 2011, 17(2): 124-129.

    Wang X L, Ma Z, Chang H, et al. Theoretical and experimental study rising Zeeman slower efficiency use compensatory coils[J]. Journal of Quantum Optics, 2011, 17(2): 124-129.

[19] Wang Q, Lin Y G, Gao F, et al. A longitudinal Zeeman slower based on ring-shaped permanent magnets for a strontium optical lattice clock[J]. Chinese Physics Letters, 2015, 32(10): 100701.

    Wang Q, Lin Y G, Gao F, et al. A longitudinal Zeeman slower based on ring-shaped permanent magnets for a strontium optical lattice clock[J]. Chinese Physics Letters, 2015, 32(10): 100701.

[20] 于齐, 熊炜, 张胤, 等. 低功耗、小型化稳频激光系统的设计与实现[J]. 中国激光, 2016, 43(8): 0801010.

    于齐, 熊炜, 张胤, 等. 低功耗、小型化稳频激光系统的设计与实现[J]. 中国激光, 2016, 43(8): 0801010.

    Yu Q, Xiong W, Zhang Y, et al. Design and implementation of miniaturized frequency-stabilized laser system with low power consumption[J]. Chinese Journal of Lasers, 2016, 43(8): 0801010.

    Yu Q, Xiong W, Zhang Y, et al. Design and implementation of miniaturized frequency-stabilized laser system with low power consumption[J]. Chinese Journal of Lasers, 2016, 43(8): 0801010.

[21] 屈求智, 夏文兵, 汪斌, 等. 空间激光冷却原子集成光学平台设计[J]. 光学学报, 2015, 35(6): 0602003.

    屈求智, 夏文兵, 汪斌, 等. 空间激光冷却原子集成光学平台设计[J]. 光学学报, 2015, 35(6): 0602003.

    Qu Q Z, Xia W B, Wang B, et al. Integrating design of a compact optical system for space laser cooling application[J]. Acta Optica Sinica, 2015, 35(6): 0602003.

    Qu Q Z, Xia W B, Wang B, et al. Integrating design of a compact optical system for space laser cooling application[J]. Acta Optica Sinica, 2015, 35(6): 0602003.

[22] 屈求智, 汪斌, 吕德胜, 等. 空间冷原子钟原理样机地面测试结果[J]. 中国激光, 2015, 42(9): 0902006.

    屈求智, 汪斌, 吕德胜, 等. 空间冷原子钟原理样机地面测试结果[J]. 中国激光, 2015, 42(9): 0902006.

    Qu Q Z, Wang B, Lü D S, et al. Principle and progress of cold atom clock in space[J]. Chinese Journal of Lasers, 2015, 42(9): 0902006.

    Qu Q Z, Wang B, Lü D S, et al. Principle and progress of cold atom clock in space[J]. Chinese Journal of Lasers, 2015, 42(9): 0902006.

[23] Shang H S, Zhang X G, Zhang S N, et al. Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10 -15 instability [J]. Optics Express, 2017, 25(24): 030459.

    Shang H S, Zhang X G, Zhang S N, et al. Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10 -15 instability [J]. Optics Express, 2017, 25(24): 030459.

[24] Zhang S N, Zhang X G, Cui J Z, et al. Compact Rb optical frequency standard with 10 -15 stability [J]. Review of Scientific Instruments, 2017, 88(10): 103106.

    Zhang S N, Zhang X G, Cui J Z, et al. Compact Rb optical frequency standard with 10 -15 stability [J]. Review of Scientific Instruments, 2017, 88(10): 103106.

[25] Loftus TH. Laser cooling and trapping of atomic ytterbium[D]. Eugene: University of Oregon, 2001: 9- 22.

    Loftus TH. Laser cooling and trapping of atomic ytterbium[D]. Eugene: University of Oregon, 2001: 9- 22.

[26] Steane A M, Chowdhury M, Foot C J. Radiation force in the magneto-optical trap[J]. Journal of the Optical Society of America B, 1992, 9(12): 2142-2158.

    Steane A M, Chowdhury M, Foot C J. Radiation force in the magneto-optical trap[J]. Journal of the Optical Society of America B, 1992, 9(12): 2142-2158.

[27] Tao Y, Kanhaiya P, Mysore S P, et al. A high flux source of cold strontium atoms[J]. The European Physical Journal D, 2015, 69(10): 1-12.

    Tao Y, Kanhaiya P, Mysore S P, et al. A high flux source of cold strontium atoms[J]. The European Physical Journal D, 2015, 69(10): 1-12.

[28] Li Y M, Chen X Z, Wang Q J, et al. Motion of cesium atom in the one-dimensional magneto-optical trap[J]. Acta Physica Sinica, 1995, 4(10): 727-738.

    Li Y M, Chen X Z, Wang Q J, et al. Motion of cesium atom in the one-dimensional magneto-optical trap[J]. Acta Physica Sinica, 1995, 4(10): 727-738.

[29] Xu X Y, Loftus T H, Hall J L, et al. Cooling and trapping of atomic strontium[J]. Journal of the Optical Society of America B, 2003, 20(5): 968-978.

    Xu X Y, Loftus T H, Hall J L, et al. Cooling and trapping of atomic strontium[J]. Journal of the Optical Society of America B, 2003, 20(5): 968-978.

[30] Savard TA. Raman induced resonance imaging of trapped atoms[D]. Durham: Duke University, 1998: 88- 100.

    Savard TA. Raman induced resonance imaging of trapped atoms[D]. Durham: Duke University, 1998: 88- 100.

[31] Xu Q F, Liu H, Lu B Q, et al. Observation of 1S0→ 3P0 transition of bosonic strontium in the Lamb-Dicke regime [J]. Chinese Optics Letters, 2015, 13(10): 100201.

    Xu Q F, Liu H, Lu B Q, et al. Observation of 1S0→ 3P0 transition of bosonic strontium in the Lamb-Dicke regime [J]. Chinese Optics Letters, 2015, 13(10): 100201.

[32] Courtillot I, Quessada-Vial A, Brusch A, et al. Accurate spectroscopy of Sr atoms[J]. The European Physical Journal D, 2005, 33(2): 161-171.

    Courtillot I, Quessada-Vial A, Brusch A, et al. Accurate spectroscopy of Sr atoms[J]. The European Physical Journal D, 2005, 33(2): 161-171.

[33] 谢玉林, 韩建新, 卢本全, 等. 利用Doppler测速法实现小发散角锶原子速度分布的测量[J]. 量子光学学报, 2016, 22(4): 363-368.

    谢玉林, 韩建新, 卢本全, 等. 利用Doppler测速法实现小发散角锶原子速度分布的测量[J]. 量子光学学报, 2016, 22(4): 363-368.

    Xie Y L, Han J X, Lu B Q, et al. Measurement of velocity distribution of strontium atoms with small divergence angle by Doppler anemometry[J]. Journal of Quantum Optics, 2016, 22(4): 363-368.

    Xie Y L, Han J X, Lu B Q, et al. Measurement of velocity distribution of strontium atoms with small divergence angle by Doppler anemometry[J]. Journal of Quantum Optics, 2016, 22(4): 363-368.

韩建新, 卢晓同, 卢本全, 王叶兵, 孔德欢, 张首刚, 常宏. 锶光钟Zeeman减速器中截止速度对蓝磁光阱原子数的影响[J]. 光学学报, 2018, 38(7): 0702001. Jianxin Han, Xiaotong Lu, Benquan Lu, Yebing Wang, Dehuan Kong, Shougang Zhang, Hong Chang. Influence of Cut-off Speed on Atomic Number of Blue Magneto-Optical Trap in Zeeman Slower of Strontium Optical Clock[J]. Acta Optica Sinica, 2018, 38(7): 0702001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!