中国激光, 2020, 47 (5): 0500014, 网络出版: 2020-05-12   

面向空间应用耐辐照有源光纤研究进展 下载: 2822次特邀综述

Radiation-Resistant Active Fibers for Space Applications
作者单位
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 国科大杭州高等研究院, 浙江 杭州 310024
引用该论文

邵冲云, 于春雷, 胡丽丽. 面向空间应用耐辐照有源光纤研究进展[J]. 中国激光, 2020, 47(5): 0500014.

Chongyun Shao, Chunlei Yu, Lili Hu. Radiation-Resistant Active Fibers for Space Applications[J]. Chinese Journal of Lasers, 2020, 47(5): 0500014.

参考文献

[1] Powell D. Lasers boost space communications[J]. Nature, 2013, 499(7458): 266-267.

[2] Wright M W, Valley G C. Yb-doped fiber amplifier for deep-space optical communications[J]. Journal of Lightwave Technology, 2005, 23(3): 1369-1374.

[3] Huang J P, Zhang G, Wang P P, et al. Research of radiation resistant Er doped fiber for space detection[J]. Proceedings of SPIE, 2016, 10141: 1014108.

[4] Duchez J B, Mady F, Mebrouk Y, et al. Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers[J]. Optics Letters, 2014, 39(20): 5969-5972.

[5] Williams GM, Friebele EJ. Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements[C]∥RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294), September 15-19, 1997, Cannes, France. New York: IEEE, 1997: 399- 404.

[6] Ott M N, Jin X D, Chuska R, et al. Space flight requirements for fiber optic components: qualification testing and lessons learned[J]. Proceedings of SPIE, 2006, 6193: 619309.

[7] Girard S, Morana A, Ladaci A, et al. Recent advances in radiation-hardened fiber-based technologies for space applications[J]. Journal of Optics, 2018, 20(9): 093001.

[8] Ott MN. Radiation effects data on commercially available optical fiber: database summary[C]∥IEEE Radiation Effects Data Workshop, July 15-19, 2002, Phoenix, AZ, USA. New Tork: IEEE, 2002: 24- 31.

[9] Gusarov A, Hoeffgen S K. Radiation effects on fiber gratings[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 2037-2053.

[10] BerghmansF, BrichardB, Fernandez AF, et al. An introduction to radiation effects on optical components and fiber optic sensors[M] ∥Bock W J, Gannot I, Tanev S. Optical waveguide sensing and imaging. Dordrecht: Springer, 2008: 127- 165.

[11] Perry M, Niewczas P, Johnston M. Effects of neutron-gamma radiation on fiber Bragg grating sensors: a review[J]. IEEE Sensors Journal, 2012, 12(11): 3248-3257.

[12] Friebele E J, Gingerich M E, Brambani L A, et al. Radiation effects in polarization-maintaining fibers[J]. Proceedings of SPIE, 1990, 1314: 146-154.

[13] Olanterä L, Sigaud C, Troska J, et al. Gamma irradiation of minimal latency hollow-core photonic bandgap fibres[J]. Journal of Instrumentation, 2013, 8(12): C12010.

[14] Girard S, Yahya A, Boukenter A, et al. γ-radiation-induced attenuation in photonic crystal fibre[J]. Electronics Letters, 2002, 38(20): 1169-1171.

[15] Girard S, Ouerdane Y, Tortech B, et al. Radiation effects on ytterbium- and ytterbium/erbium-doped double-clad optical fibers[J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3293-3299.

[16] Girard S, Ouerdane Y, Vivona M, et al. Radiation effects on rare-earth doped optical fibers[J]. Proceedings of SPIE, 2010, 7818: 78170I.

[17] VelazcoR, FouillatP, ReisR. Radiation effects on embedded systems[M]. Dordrecht: Springer, 2007.

[18] Girard S, Kuhnhenn J, Gusarov A, et al. Radiation effects on silica-based optical fibers: recent advances and future challenges[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 2015-2036.

[19] 邓涛, 谢峻林, 罗杰, 等. 光纤抗辐射性能研究回顾与展望[J]. 光通信技术, 2007, 31(9): 58-61.

    Deng T, Xie J L, Luo J, et al. Review of study on irradiation resistance properties of optical fibers[J]. Optical Communication Technology, 2007, 31(9): 58-61.

[20] 邵冲云. 掺Yb 3+石英玻璃的结构、光谱和耐辐照性能及辐致暗化机理研究 [D]. 北京: 中国科学院大学, 2019.

    Shao CY. Study on structure, spectrum, radiation resistance and radiation-induced darkening mechanism of Yb 3+-doped silica glasses [D]. Beijing: University of Chinese Academy of Sciences, 2019

[21] Friebele E J, Griscom D L, Stapelbroek M, et al. Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica[J]. Physical Review Letters, 1979, 42(20): 1346-1349.

[22] Friebele E J, Long K J, Askina C G, et al. Overview of radiation effects in fiber optics[J]. Proceedings of SPIE, 1985, 541: 70-88.

[23] Friebele E J. Radiation protection of fiber optic materials: effect of cerium doping on the radiation-induced absorption[J]. Applied Physics Letters, 1975, 27(4): 210-212.

[24] Girard S, Laurent A, Vivona M, et al. Radiation effects on fiber amplifiers: design of radiation tolerant Yb/Er-based devices[J]. Proceedings of SPIE, 2011, 7914: 79142P.

[25] Girard S, Alessi A, Richard N, et al. Overview of radiation induced point defects in silica-based optical fibers[J]. Reviews in Physics, 2019, 4: 100032.

[26] Zotov K V, Likhachev M E, Tomashuk A L, et al. Radiation resistant Er-doped fibers: optimization of pump wavelength[J]. IEEE Photonics Technology Letters, 2008, 20(17): 1476-1478.

[27] Zotov KV, Likhachev ME, Tomashuk AL, et al. Radiation-resistant erbium-doped fiber for spacecraft applications[C]∥2007 9th European Conference on Radiation and Its Effects on Components and Systems, September 10-14, 2007, Deauville, France. New York: IEEE, 2007: 450- 453.

[28] Zotov K V, Likhachev M E, Tomashuk A L, et al. Radiation-resistant erbium-doped silica fibre[J]. Quantum Electronics, 2007, 37(10): 946-949.

[29] Likhachev M E, Bubnov M M, Zotov K V, et al. Radiation resistance of Er-doped silica fibers: effect of host glass composition[J]. Journal of Lightwave Technology, 2013, 31(5): 749-755.

[30] Fox B P, Simmons-Potter K. Kliner D A V, et al. Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers[J]. Journal of Non-Crystalline Solids, 2013, 378: 79-88.

[31] Fox B P, Simmons-Potter K, Thomes W J, et al. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1618-1625.

[32] Fox B P, Schneider Z V, Simmons-Potter K, et al. Spectrally resolved transmission loss in gamma irradiated Yb-doped optical fibers[J]. IEEE Journal of Quantum Electronics, 2008, 44(6): 581-586.

[33] 盛于邦, 杨旅云, 栾怀训, 等. γ辐照对掺Er硅酸盐玻璃吸收和发光特性的影响[J]. 物理学报, 2012, 61(11): 116301.

    Sheng Y B, Yang L Y, Luan H X, et al. Gamma radiation effects on absorption and emission properties of erbium-doped silicate glasses[J]. Acta Physica Sinica, 2012, 61(11): 116301.

[34] 盛于邦, 邢瑞先, 栾怀训, 等. 伽马辐照对掺镱硅酸盐玻璃光学性能的影响[J]. 无机材料学报, 2012, 27(8): 860-864.

    Sheng Y B, Xing R X, Luan H X, et al. Gamma radiation effects on the optical properties of Yb-doped silicate glasses[J]. Journal of Inorganic Materials, 2012, 27(8): 860-864.

[35] 黄宏琪, 赵楠, 陈瑰, 等. γ射线辐照对掺Yb光纤材料性能的影响[J]. 物理学报, 2014, 63(20): 200201.

    Huang H Q, Zhao N, Chen G, et al. Effects of γ-radiation on Yb-doped fiber[J]. Acta Physica Sinica, 2014, 63(20): 200201.

[36] Xing Y B, Zhao N, Liao L, et al. Active radiation hardening of Tm-doped silica fiber based on pump bleaching[J]. Optics Express, 2015, 23(19): 24236-24245.

[37] Xing Y B, Liu Y Z, Zhao N, et al. Radical passive bleaching of Tm-doped silica fiber with deuterium[J]. Optics Letters, 2018, 43(5): 1075-1078.

[38] Xing Y B, Liu Y Z, Cao R T, et al. Elimination of radiation damage in Tm-doped silica fibers based on the radical bleaching of deuterium loading[J]. OSA Continuum, 2018, 1(3): 987-995.

[39] Xing Y B, Huang H Q, Zhao N, et al. Pump bleaching of Tm-doped fiber with 793 nm pump source[J]. Optics Letters, 2015, 40(5): 681-684.

[40] Xing R X, Sheng Y B, Liu Z J, et al. Investigation on radiation resistance of Er/Ce co-doped silicate glasses under 5 kGy gamma-ray irradiation[J]. Optical Materials Express, 2012, 2(10): 1329-1335.

[41] Xie F H, Shao C Y, Wang M, et al. Research on photo-radiation darkening performance of ytterbium-doped silica fibers for space applications[J]. Journal of Lightwave Technology, 2019, 37(4): 1091-1097.

[42] Xie F H, Shao C Y, Wang M, et al. Photodarkening-resistance improvement of Yb 3+/Al 3+ co-doped silica fibers fabricated via sol-gel method[J]. Optics Express, 2018, 26(22): 28506-28516.

[43] Xie F H, Shao C Y, Lou F G, et al. Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb 3+/Al 3+ co-doped silica fiber[J]. Chinese Optics Letters, 2018, 16(1): 010603.

[44] Wang F, Shao C Y, Yu C L, et al. Effect of AlPO4 join concentration on optical properties and radiation hardening performance of Yb-doped Al2O3-P2O5-SiO2 glass[J]. Journal of Applied Physics, 2019, 125(17): 173104.

[45] Shao C Y, Wang F, Guo M T, et al. Structure and property of Yb 3+/Al 3+/Ce 3+/F -doped silica glasses[J]. Journal of the Chinese Ceramic Society, 2019, 47(1): 120-131.

[46] Shao C Y, Xie F H, Wang F, et al. UV absorption bands and its relevance to local structures of ytterbium ions in Yb 3+/Al 3+/P 5+-doped silica glasses[J]. Journal of Non-Crystalline Solids, 2019, 512: 53-59.

[47] Bobkov K K, Rybaltovsky A A. Vel'miskin V V, et al. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres[J]. Quantum Electronics, 2014, 44(12): 1129-1135.

[48] Shao C Y, Jiao Y, Lou F G, et al. Enhanced radiation resistance of ytterbium-doped silica fiber by pretreating on a fiber preform[J]. Optical Materials Express, 2020, 10(2): 408-420.

[49] Shao C Y, Ren J J, Wang F, et al. Origin of radiation-induced darkening in Yb 3+/Al 3+/P 5+-doped silica glasses: effect of the P/Al ratio[J]. The Journal of Physical Chemistry B, 2018, 122(10): 2809-2820.

[50] Shao C Y, Xu W, Ollier N, et al. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: evidence from optical spectroscopy, EPR and XPS analyses[J]. Journal of Applied Physics, 2016, 120(15): 153101.

[51] 吴闻迪, 余婷, 陶蒙蒙, 等. γ射线辐照效应实验研究[J]. 中国光学, 2018, 11(4): 610-614.

    Wu W D, Yu T, Tao M M, et al. Experimental investigation of gamma-ray irradiation effect on Tm-doped fibers[J]. Chinese Optics, 2018, 11(4): 610-614.

[52] Ma J, Li M, Tan L Y, et al. Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment[J]. Optics Express, 2009, 17(18): 15571-15577.

[53] Ma J, Li M, Tan L Y, et al. Space radiation effect on EDFA for inter-satellite optical communication[J]. Optik, 2010, 121(6): 535-538.

[54] Liu C X, Wu X, Zhu J H, et al. Radiation-resistant Er 3+-doped superfluorescent fiber sources[J]. Sensors, 2018, 18(7): 2236.

[55] Wu X, Liu C X, Wu D, et al. Radiation resistance of an Er/Ce codoped superfluorescent source of conventional fiber and photonic crystal fiber[J]. Optical Engineering, 2017, 56(12): 126109.

[56] 谌鸿伟, 陶蒙蒙, 赵海川, 等. γ射线辐照增益光纤影响激光器功率特性实验[J]. 中国激光, 2019, 46(12): 1201005.

    Chen H W, Tao M M, Zhao H C, et al. Experimental investigations on laser power characteristics influenced by gamma-ray irradiated gain fiber[J]. Chinese Journal of Lasers, 2019, 46(12): 1201005.

[57] 王巍, 王学锋, 李晶, 等. 高精度光纤陀螺用掺铒光纤光源辐照性能试验[J]. 红外与激光工程, 2012, 41(7): 1826-1830.

    Wang W, Wang X F, Li J, et al. Experiment on performance of erbium-doped fiber source for high performance fiber-optic gyroscope in a space irradiation environment[J]. Infrared and Laser Engineering, 2012, 41(7): 1826-1830.

[58] Wang Q, Tian C P, Wang Y Y, et al. Review of radiation hardening techniques for EDFAs in space environment[J]. Proceedings of SPIE, 2015, 9521: 95211D.

[59] Cao J H, Jian S S, Wang M, et al. Co 60 radiation effects on rare earth doped fibers[J]. Optik, 2016, 127(4): 1677-1680.

[60] 李竞飞, 陈伟民, 雷小华, 等. 伽马辐照对掺铒光纤性能影响的研究[J]. 光谱学与光谱分析, 2016, 36(6): 1882-1887.

    Li J F, Chen W M, Lei X H, et al. Gamma radiation effects on erbium-doped optical fibers properties[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1882-1887.

[61] 王岩, 李洪祚, 郝子强. 空间光通信中EDFA的抗辐射技术的研究[J]. 激光与光电子学进展, 2013, 50(7): 070601.

    Wang Y, Li H Z, Hao Z Q. Research of anti-radiation technology for the EDFA systems in space environment[J]. Laser & Optoelectronics Progress, 2013, 50(7): 070601.

[62] Griscom D L. A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled[J]. Physics Research International, 2013, 2013: 379041.

[63] Griscom D L. Nature of defects and defect generation in optical glasses[J]. Proceedings of SPIE, 1985, 541: 38-59.

[64] Griscom DL. The natures of point defects in amorphous silicon dioxide[M] ∥Pacchioni G, Skuja L, Griscom D L. Defects in SiO2 and related dielectrics: science and technology. Dordrecht: Springer, 2000: 117- 159.

[65] Griscom D L. Optical properties and structure of defects in silica glass[J]. Journal of the Ceramic Society of Japan, 1991, 99(1154): 923-942.

[66] Griscom D L. Defect structure of glasses: some outstanding questions in regard to vitreous silica[J]. Journal of Non-Crystalline Solids, 1985, 73(1/2/3): 51-77.

[67] Griscom D L, Friebele E J, Long K J, et al. Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers[J]. Journal of Applied Physics, 1983, 54(7): 3743-3762.

[68] Lezius M, Predehl K, Stower W, et al. Radiation induced absorption in rare earth doped optical fibers[J]. IEEE Transactions on Nuclear Science, 2012, 59(2): 425-433.

[69] Arai T, Ichii K, Tanigawa S, et al. Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses[J]. Proceedings of SPIE, 2011, 7914: 79140K.

[70] Deschamps T, Vezin H, Gonnet C, et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber[J]. Optics Express, 2013, 21(7): 8382-8392.

[71] Ollier N, Corbel C, Duchez J B, et al. In situ observation of the Yb 2+ emission in the radiodarkening process of Yb-doped optical preform[J]. Optics Letters, 2016, 41(9): 2025-2028.

[72] 胡丽丽. 激光玻璃及应用[M]. 上海: 上海科学技术出版社, 2019.

    Hu LL. Laser glasses and their applications[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2019.

[73] Rydberg S, Engholm M. Experimental evidence for the formation of divalent ytterbium in the photodarkening process of Yb-doped fiber lasers[J]. Optics Express, 2013, 21(6): 6681-6688.

[74] Mebrouk Y, Mady F, Benabdesselam M, et al. Experimental evidence of Er 3+ ion reduction in the radiation-induced degradation of erbium-doped silica fibers[J]. Optics Letters, 2014, 39(21): 6154-6157.

[75] Hari Babu B, Ollier N, León Pichel M, et al. Radiation hardening in sol-gel derived Er 3+-doped silica glasses[J]. Journal of Applied Physics, 2015, 118(12): 123107.

[76] Malchukova E, Boizot B. Reduction of Eu 3+ to Eu 2+ in aluminoborosilicate glasses under ionizing radiation[J]. Materials Research Bulletin, 2010, 45(9): 1299-1303.

[77] Zhang J, Riesen H. Controlled generation of Tm 2+ ions in nanocrystalline BaFCl∶Tm 3+ by X-ray irradiation[J]. The Journal of Physical Chemistry A, 2017, 121(4): 803-809.

[78] Qiu J, Hirao K. Γ-ray induced reduction of Sm 3+ to Sm 2+ in sodium aluminoborate glasses[J]. Journal of Materials Science Letters, 2001, 20(8): 691-693.

[79] Vahedi S, Okada G, Morrell B, et al. X-ray induced Sm 3+ to Sm 2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy[J]. Journal of Applied Physics, 2012, 112(7): 073108.

[80] Pal Singh G, Kaur P, Kaur S, et al. Conversion of Ce 3+ to Ce 4+ ions after gamma ray irradiation on CeO2-PbO-B2O3 glasses[J]. Physica B: Condensed Matter, 2013, 408: 115-118.

[81] Imai H, Arai K, Imagawa H, et al. Two types of oxygen-deficient centers in synthetic silica glass[J]. Physical Review B, 1988, 38(17): 12772-12775.

[82] Amossov A V, Rybaltovsky A O. Oxygen-deficient centers in silica glasses: a review of their properties and structure[J]. Journal of Non-Crystalline Solids, 1994, 179: 75-83.

[83] Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide[J]. Journal of Non-Crystalline Solids, 1998, 239(1/2/3): 16-48.

[84] Brower K L. Electron paramagnetic resonance of Al E1' centers in vitreous silica[J]. Physical Review B, 1979, 20(5): 1799-1811.

[85] Hideo H, Hiroshi K. Radiation-induced coloring and paramagnetic centers in synthetic SiO2∶Al glasses[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1994, 91: 395-399.

[86] Chah K, Boizot B, Reynard B, et al. Micro-Raman and EPR studies of β-radiation damages in aluminosilicate glass[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 191: 337-341.

[87] Fujimaki M, Watanabe T, Katoh T, et al. Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings[J]. Physical Review B, 1998, 57(7): 3920-3926.

[88] Alessi A, Agnello S, Gelardi F M, et al. Influence of Ge doping level on the EPR signal of Ge(1), Ge(2) and E'Ge defects in Ge-doped silica[J]. Journal of Non-Crystalline Solids, 2011, 357(8/9): 1900-1903.

[89] Kobayashi Y, Sekiya E H, Saito K, et al. Effects of Ge co-doping on P-related radiation-induced absorption in Er/Yb-doped optical fibers for space applications[J]. Journal of Lightwave Technology, 2018, 36(13): 2723-2729.

[90] LeonM, LancryM, OllierN, et al. Influence of Al/Ge ratio on radiation-induced attenuation in nanostructured erbium-doped fibers preforms[C]∥CLEO: 2015, May 10-15, 2015, San Jose, California. Washington, D.C.: OSA, 2015: SM3L. 8.

[91] Girard S, Ouerdane Y, Bouazaoui M, et al. Transient radiation-induced effects on solid core microstructured optical fibers[J]. Optics Express, 2011, 19(22): 21760-21767.

[92] Nagasawa K, Tanabe M, Yahagi K. Gamma-ray-induced absorption bands in pure-silica-core fibers[J]. Japanese Journal of Applied Physics, 1984, 23(12): 1608-1613.

[93] Girard S, Tortech B, Regnier E, et al. Proton- and gamma-induced effects on erbium-doped optical fibers[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2426-2434.

[94] Barnes C E, Greenwell R A, Nelson G W. The effect of fiber coating on the radiation response of fluorosilicate clad, pure silica core step index fibers[J]. Proceedings of SPIE, 1987, 787: 69-76.

[95] Brichard B, Fernandez Fernandez A, Berghmans F, et al. Origin of the radiation-induced OH vibration band in polymer-coated optical fibers irradiated in a nuclear fission reactor[J]. IEEE Transactions on Nuclear Science, 2002, 49(6): 2852-2856.

[96] Hanafusa H, Hibino Y, Yamamoto F. Drawing condition dependence of radiation-induced loss in optical fibres[J]. Electronics Letters, 1986, 22(2): 106-108.

[97] Girard S, Ouerdane Y, Boukenter A, et al. Transient radiation responses of silica-based optical fibers: influence of modified chemical-vapor deposition process parameters[J]. Journal of Applied Physics, 2006, 99(2): 023104.

[98] Tool A Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range[J]. Journal of the American Ceramic Society, 1946, 29(9): 240-253.

[99] Wang R P, Tai N, Saito K, et al. Fluorine-doping concentration and fictive temperature dependence of self-trapped holes in SiO2 glasses[J]. Journal of Applied Physics, 2005, 98(2): 023701.

[100] Babu B H, Lancry M, Ollier N, et al. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction[J]. Applied Optics, 2016, 55(27): 7455-7461.

[101] Lancry M, Babu B H, Ollier N, et al. Radiation hardening of silica glass through fictive temperature reduction[J]. International Journal of Applied Glass Science, 2017, 8(3): 285-290.

[102] Girard S, Keurinck J, Boukenter A, et al. Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 215(1/2): 187-195.

[103] GirardS, BrichardB, BaggioJ, et al. Comparative study of pulsed X-ray and γ-ray radiation-induced effects in pure-silica-core optical fibers[C]∥2005 8th European Conference on Radiation and Its Effects on Components and Systems, September 19-23, 2005, Cap d'Agde, France. New York: IEEE, 2005: 4365552.

[104] Wijnands T, de Jonge L K, Kuhnhenn J, et al. Optical absorption in commercial single mode optical fibers in a high energy physics radiation field[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 2216-2222.

[105] Girard S, Marcandella C, Morana A, et al. Combined high dose and temperature radiation effects on multimode silica-based optical fibers[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4305-4313.

[106] Ladaci A, Girard S, Mescia L, et al. Optimization of rare-earth-doped amplifiers for space mission through a hardening-by-system strategy[J]. Proceedings of SPIE, 2017, 10096: 100690F.

[107] LadaciA. Rare earth doped optical fibers and amplifiers for space applications[D]. Lyon,France: Université de Lyon, 2017.

[108] Griscom D L. Radiation hardening of pure silica core optical fibers and their method of making by ultra-high-dose gamma ray pre-irradiation: US 5574820[P].1996-11-12[2019-12-25]. https:∥patents.google.com/patent/US5574820A/en.

[109] Griscom D L. Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation[J]. Journal of Applied Physics, 1995, 77(10): 5008-5013.

[110] Yeniay A, Gao R F. Radiation induced loss properties and hardness enhancement technique for ErYb doped fibers for avionic applications[J]. Optical Fiber Technology, 2013, 19(2): 88-92.

[111] Thomas J, Myara M, Troussellier L, et al. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications[J]. Optics Express, 2012, 20(3): 2435-2444.

[112] Babu B H, Ollier N, Savelli I, et al. Study of radiation effects on Er 3+-doped nanoparticles germano-silica fibers[J]. Journal of Lightwave Technology, 2016, 34(21): 4981-4987.

[113] Ladaci A, Girard S, Mescia L, et al. Radiation hardened high-power Er 3+/Yb 3+-codoped fiber amplifiers for free-space optical communications[J]. Optics Letters, 2018, 43(13): 3049-3052.

[114] Girard S, Vivona M, Laurent A, et al. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application[J]. Optics Express, 2012, 20(8): 8457-8465.

[115] Ladaci A, Girard S, Mescia L, et al. X-rays, γ-rays, electrons and protons radiation-induced changes on the lifetimes of Er 3+ and Yb 3+ ions in silica-based optical fibers[J]. Journal of Luminescence, 2018, 195: 402-407.

[116] Vivona M, Girard S, Marcandella C, et al. Radiation hardening of rare-earth doped fiber amplifiers[J]. Proceedings of SPIE, 2017, 10564: 105641H.

[117] Liu X X, Liu C P, Chen G, et al. Influence of cerium ions on thermal bleaching of photo-darkened ytterbium-doped fibers[J]. Frontiers of Optoelectronics, 2018, 11(4): 394-399.

[118] Faile S P, Schmidt J J, Roy D M. Irradiation effects in glasses: suppression by synthesis under high-pressure hydrogen[J]. Science, 1967, 156(3782): 1593-1595.

[119] Nagasawa K, Hoshi Y, Ohki Y, et al. Improvement of radiation resistance of pure silica core fibers by hydrogen treatment[J]. Japanese Journal of Applied Physics, 1985, 24(9): 1224-1228.

[120] Girard S, Laurent A, Pinsard E, et al. Proton irradiation response of hole-assisted carbon coated erbium-doped fiber amplifiers[J]. IEEE Transactions on Nuclear Science, 2014, 61(6): 3309-3314.

[121] Girard S, Laurent A, Pinsard E, et al. Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions[J]. Optics Letters, 2014, 39(9): 2541-2544.

[122] Liu S, Zheng S P, Yang K, et al. Radiation-induced change of OH content in Yb-doped silica glass[J]. Chinese Optics Letters, 2015, 13(6): 060602.

[123] Griscom D L. Erratum: “Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation”[J. Appl. Phys. 77, 5008 (1995)][J]. Journal of Applied Physics, 2015, 118(8): 5008.

[124] Kim Y, Ju S, Jeong S, et al. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber[J]. Optics Express, 2016, 24(4): 3910-3920.

[125] Hosono H, Ikuta Y, Kinoshita T, et al. Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2[J]. Physical Review Letters, 2001, 87(17): 175501.

[126] StaurtB. Infrared spectroscopy: fundamentals and applications[M]. West Sussex, England: John Wiley and Sons, Ltd., 2004.

[127] Humbach O, Fabian H, Grzesik U, et al. Analysis of OH absorption bands in synthetic silica[J]. Journal of Non-Crystalline Solids, 1996, 203: 19-26.

[128] Stone J. Interactions of hydrogen and deuterium with silica optical fibers: a review[J]. Journal of Lightwave Technology, 1987, 5(5): 712-733.

[129] Ramsey A T, Tighe W, Bartolick J, et al. Radiation effects on heated optical fibers[J]. Review of Scientific Instruments, 1997, 68(1): 632-635.

[130] Söderlund M J. Montiei i Ponsoda J J, Koplow J P, et al. Thermal bleaching of photodarkening in ytterbium-doped fibers[J]. Proceedings of SPIE, 2010, 7580: 75800B.

[131] Friebele E J, Gingerich M E. Photobleaching effects in optical fiber waveguides[J]. Applied Optics, 1981, 20(19): 3448-3452.

[132] Liu Y Z, Xing Y B, Lin X F, et al. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading[J]. Optics Letters, 2020, 45(9): 2534-2537.

[133] Girard S, Ouerdane Y, Origlio G, et al. Radiation effects on silica-based preforms and optical fibers: I: experimental study with canonical samples[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3473-3482.

[134] Girard S, Richard N, Ouerdane Y, et al. Radiation effects on silica-based preforms and optical fibers: II: coupling ab initio simulations and experiments[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3508-3514.

[135] Girard S, Mescia L, Vivona M, et al. Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach[J]. Journal of Lightwave Technology, 2013, 31(8): 1247-1254.

[136] Mescia L, Girard S, Bia P, et al. Optimization of the design of high power Er 3+/Yb 3+-codoped fiber amplifiers for space missions by means of particle swarm approach[J]. IEEE Journal of Selected Topics in Quantum Electronics., 2014, 20(5): 484-491.

[137] Ladaci A, Girard S, Mescia L, et al. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions[J]. Journal of Applied Physics, 2017, 121(16): 163104.

邵冲云, 于春雷, 胡丽丽. 面向空间应用耐辐照有源光纤研究进展[J]. 中国激光, 2020, 47(5): 0500014. Chongyun Shao, Chunlei Yu, Lili Hu. Radiation-Resistant Active Fibers for Space Applications[J]. Chinese Journal of Lasers, 2020, 47(5): 0500014.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!