Photonic Sensors, 2018, 8 (4): 04320, Published Online: Oct. 7, 2018   

Packaging and Temperature Compensation of Fiber Bragg Grating for Strain Sensing: A Survey

Author Affiliations
1 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
Copy Citation Text

Yi KUANG, Yongxing GUO, Li XIONG, Wenlong LIU. Packaging and Temperature Compensation of Fiber Bragg Grating for Strain Sensing: A Survey[J]. Photonic Sensors, 2018, 8(4): 04320.

References

[1] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Applied Physics Letters, 1978, 32(10): 647–649.

[2] B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Optics Letters, 1978, 3(2): 66–68.

[3] W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” SPIE, 1990, 1169(96): 98–107.

[4] Y. X. Guo, D. S. Zhang, J. J. Fu, S. B. Liu, S. Z. Zhang, and F. D. Zhu, “Development and operation of a fiber Bragg grating based online monitoring strategy for slope deformation,” Sensor Review, 2015, 35 (4): 348–356.

[5] T. L. Li, Y. G. Tan, Y. Liu, A. Qu, M. Y. Liu, and Z. D. Zhou, “A fiber Bragg grating sensing based triaxial vibration sensor,” Sensors, 2015, 15(9): 24214–24229.

[6] J. A. Chen, D. Huang, H. T. Zhao, Q. B. Wang, Y. Qiu, and D. P. Duan, “Fiber Bragg grating-based plane strain monitoring of aerostat envelope structures,” Applied Optics, 2013, 52(19): 4631–4639.

[7] L. Xiong, G. Z. Jiang, Y. X. Guo, and H. H. Liu, “A three-dimensional fiber Bragg grating force sensor for robot,” IEEE Sensors Journal, 2018, 18(9): 3632–3639.

[8] K. Wan, “Quantitative sensitivity analysis of surface attached optical fiber strain sensor,” IEEE Sensors Journal, 2014, 14(6): 1805–1812.

[9] R. J. Wu, B. L. Zheng, Z. G. Liu, P. F. He, and Y. G. Tan, “Analysis on strain transfer of a pasted FBG strain sensor,” Optik – International Journal for Light and Electron Optics, 2014, 125(17): 4924–4928.

[10] H. Zhou, X. G. Qiao, H. L. Wang, D. Q. Feng, and W. Wang, “Study of a high-temperature and high-pressure FBG sensor with Al2O3 thin-wall tube substrate,” Optoelectronics Letters, 2008, 4(4): 260–263.

[11] J. Li, H. Neumann, and R. Ramalingam, “Design, fabrication, and testing of fiber Bragg grating sensors for cryogenic long-range displacement measurement,” Cryogenics, 2015, 68: 36–43.

[12] Y. X. Guo, L. Xiong, J. Y. Kong, Z. Y. Zhang, and L. Qin, “Sliding type fiber Bragg grating displacement sensor,” Optics and Precision Engineering, 2017, 25(1): 50–58.

[13] J. Huang, Z. D. Zhou, X. Y. Wen, and D. S. Zhang, “A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation,” Measurement Journal of the International Measurement Confederation, 2013, 46(3): 1041–1046.

[14] Y. D. Zhang, K. Y. Zhang, and H. Zhao, “Vacuum electrostatic voltage sensors based on uniform strain beam and twin-FBGs with temperature compensation,” Journal of Optoelectronics·Laser, 2015, 26(8): 1448–1453.

[15] Y. X. Guo, J. Y. Kong, H. H. Liu, H. G. Xiong, G. F. Li, and L. Qin, “A three-axis force fingertip sensor based on fiber Bragg grating,” Sensors and Actuators A: Physical, 2016, 249: 141–148.

[16] Y. Sun, H. S. Lee, and B. Han, “Measurement of elastic properties of epoxy molding compound by single cylindrical configuration with embedded fiber Bragg grating sensor,” Experimental Mechanics, 2017, 57: 313–324.

[17] J. F. Wang, Y. Yu, Y. Chen, H. Luo, and Z. Meng, “Research of a double fiber Bragg gratings vibration sensor with temperature and cross axis insensitive,” Optik – International Journal for Light and Electron Optics, 2015, 126(7–8): 749–753.

[18] W. T. Zhang, F. Li, and Y. L. Liu, “FBG pressure sensor based on the double shell cylinder with temperature compensation,” Measurement, 2009, 42(3): 408–411.

[19] Y. J. Zhang, B. K. Huang, B. Wei, B. B. Jia, and W. H. Bi, “Experiment research in slope monitoring based on fiber Bragg grating sensing technology,” Optical Technology, 2011, 37(2): 208–212.

[20] V. R. Pachava, S. Kamineai, S. S. Madhuvarasu, K. Putha, and V. R. Mamidi, “FBG based high sensitive pressure sensor and its low-cost interrogation system with enhanced resolution,” Photonic Sensors, 2015, 5(4): 321–329.

[21] T. L. Li, Y. G. Tan, Z. D. Zhou, L. Cai, S. Liu, Z. T. He, et al., “Study on the non-contact FBG vibration sensor and its application,” Photonic Sensors, 2015, 5(2): 128–136.

[22] T. L. Li, Y. G. Tan, Z. D. Zhou, and K. Zheng, “A non-contact FBG vibration sensor with double differential temperature compensation,” Optical Review, 2016, 21(3): 26–32.

[23] T. L. Li, C. Y. Shi, Y. G. Tan, R. Y. Li, Z. D. Zhou, and H. L. Ren, “A diaphragm type fiber Bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation,” IEEE Sensors Journal, 2016, 17(4): 1021–1029.

[24] Y. X. Guo, J. Y. Kong, H. H. Liu, D. T. Hu, and L. Qin, “Design and investigation of a reusable surface-mounted optical fiber Bragg grating strain sensor,” IEEE Sensors Journal, 2016, 16(23): 8456–8462.

[25] K. Tai, A. Hasegawa, and A. Tomita, “Embedding optical fibers in metal alloys,” Instrumentation & Measurement Magazine IEEE, 2003, 6(2): 31–36.

[26] D. Fan, “Experimental study of sense characteristic based on metalized package fiber Bragg grating,” Chinese Journal of Sensors and Actuators, 2006, 1234–1237.

[27] R. Teng, S. H. Song, R. S. Shen, Y. S. Zhang, and G. T. Du, “Study on electroless plating of nickel and electroplating of stannum on quartz optical fiber,” Optical Technique, 2008, 34: 87–88.

[28] B. Shui, “Study on sensing technology of metal coating fiber Bragg grating,” Ph.D. dissertation, Wuhan University of Technology, Wuhan, China, 2012.

[29] Y. Feng, H. Zhang, Y. L. Li, and C. F. Rao, “Temperature sensing of metal-coated fiber Bragg grating,” IEEE/ASME Transactions on Mechatronics, 2011, 15(4): 511–519.

[30] Y. M. Zhang, L. Q. Zhu, F. Luo, M. L. Dong, R. T. Yang, W. He, et al., “Comparison of metal-packaged and adhesive-packaged fiber Bragg grating sensors,” IEEE Sensors Journal, 2016, 16(15): 2958–5963.

[31] Y. L. Li, H. Zhang, Y. Feng, and G. Peng, “Metal coming of fiber grating and the temperature sensing character after metallization,” Optical Fiber Technology, 2009, 15(4): 391–397.

[32] Y. Feng, H. Zhang, Y. L. Li, and G. Peng, “Temperature sensitization model of fiber Bragg grating with metal coating,” Acta Optica Sinica, 2009, 29(2): 336–341.

[33] S. W. Lu, J. J. Wang, H. J. Zhang, and Y. Gao, “Fabrication of fiber Bragg grating sensor coated with nickel plate on Sn-Al substrate,” Journal of Optoelectronics Laser, 2012, 23(10): 1847–1850.

[34] Y. L. Lo and C. P. Kuo, “Packaging a fiber Bragg grating with metal coming for an athermal design,” Journal of Lightwave Technology, 2003, 21(5): 1377–1383.

[35] R. Shen, “Research of metal-coated and sensing technology applications on FBG,” Ph.D. dissertation, Dalian University of Technology, Dalian, China, 2008.

[36] R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krige, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics, 2008, 48(3): 142–147.

[37] Y. X. Guo, D. S. Zhang, Z. D. Zhou, L. Xiong, and X. W. Deng, “Welding-packaged accelerometer based on metal-coated FBG,” Chinese Optics Letters, 2013, 11(7): 21–23.

[38] Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” SPIE – The International Society for Optical Engineering, 2012, 8421: 84213V-1–84213V-4.

[39] Q. Nan, H. U. Wu, and S. Li, “Metallization packaging method for FBG vibration sensor,” Transactions of the China Welding Institution, 2016, 37(2): 17–20.

[40] Y. Tu and S. T. Tu, “Fabrication and characterization of a metal-packaged regenerated fiber Bragg grating strain sensor for structural integrity monitoring of high-temperature components,” Smart Materials & Structures, 2014, 23(3): 35001–35011.

[41] Y. Tu, Y. H. Qi, and T. S. Tu, “Fabrication and thermal characteristics of Ti-Ag-Ni coated regenerated grating sensors for high-temperature sensing,” Smart Materials & Structures, 2013, 22(7): 075026-1–075026-7.

Yi KUANG, Yongxing GUO, Li XIONG, Wenlong LIU. Packaging and Temperature Compensation of Fiber Bragg Grating for Strain Sensing: A Survey[J]. Photonic Sensors, 2018, 8(4): 04320.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!