光学学报, 2019, 39 (5): 0506002, 网络出版: 2019-05-10  

基于石墨烯的D型双芯光纤调制器 下载: 875次

Graphene-Based D-Shape Twin-Core Fiber Modulator
作者单位
北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
引用该论文

金丽丹, 宁提纲, 裴丽, 郑晶晶, 李晶, 贺雪晴. 基于石墨烯的D型双芯光纤调制器[J]. 光学学报, 2019, 39(5): 0506002.

Lidan Jin, Tigang Ning, Li Pei, Jingjing Zheng, Jing Li, Xueqing He. Graphene-Based D-Shape Twin-Core Fiber Modulator[J]. Acta Optica Sinica, 2019, 39(5): 0506002.

参考文献

[1] Kawanishi T, Sakamoto T, Izutsu M. High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 79-91.

[2] Binh L N. Lithium niobate optical modulators: devices and applications[J]. Journal of Crystal Growth, 2006, 288(1): 180-187.

[3] Sugawara M, Fujii T, Yamazaki S, et al. Theoretical and experimental study of the optical-absorption spectrum of exciton resonance in In0.53Ga0.47 As/InP quantum wells[J]. Physical Review B: Condensed Matter, 1990, 42(15): 9587-9597.

[4] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[5] Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101(19): 196405.

[6] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.

[7] 毕卫红, 马敬云, 杨凯丽, 等. 石墨烯光纤及其应用[J]. 激光与光电子学进展, 2017, 54(4): 040002.

    Bi H W, Ma J Y, Yang K L, et al. Graphene fiber and its application[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040002.

[8] Fu M X, Zhang Y. Progress of terahertz devices based on graphene[J]. Journal of Electronic Science and Technology, 2013, 11(4): 352-359.

[9] 廖国珍, 张军, 蔡祥, 等. 基于石墨烯的全光纤温度传感器的研究[J]. 光学学报, 2013, 33(7): 0706004.

    Liao G Z, Zhang J, Cai X, et al. All-fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 2013, 33(7): 0706004.

[10] Bao Q L, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415.

[11] Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[12] Yang L Z, Hu T, Hao R, et al. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide[J]. Optics Letters, 2013, 38(14): 2512-2515.

[13] Midrio M, Boscolo S, Moresco M. et al. Graphene-assisted critically-coupled optical ring modulator[J]. Optics Express, 2012, 20(21): 23144.

[14] Li W, Chen B G, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959.

[15] Sorianello V, Midrio M, Contestabile G, et al. Graphene-silicon phase modulators with gigahertz bandwidth[J]. Nature Photonics, 2018, 12(1): 40-44.

[16] Phare C T. Daniel Lee Y H, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature Photonics, 2015, 9(8): 511-514.

[17] Chen X, Wang Y, Xiang Y J, et al. A broadband optical modulator based on a graphene hybrid plasmonic waveguide[J]. Journal of Lightwave Technology, 2016, 34(21): 4948-4953.

[18] Xiao T H, Cheng Z Z, Goda K. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits[J]. Nanotechnology, 2017, 28(24): 245201.

[19] Zhou F, Jin X F, Hao R, et al. A graphene-based all-fiber electro-absorption modulator[J]. Journal of Optics, 2016, 45(4): 337-342.

[20] 郑晶晶, 郑凯, 彭健, 等. 单芯光纤与双芯光纤的对接和熔接耦合效率分析[J]. 光学学报, 2010, 30(9): 2529-2535.

    Zheng J J, Zheng K, Peng J, et al. Analysis of splicing and splicing fusion coupling efficiency between single-core fiber and dual-core fiber[J]. Acta Optica Sinica, 2010, 30(9): 2529-2535.

[21] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

[22] Ye S W, Wang Z S, Tang L F, et al. Electro-absorption optical modulator using dual-graphene-on-graphene configuration[J]. Optics Express, 2014, 22(21): 26173-26180.

[23] Yan J, Zhang Y B, Kim P, et al. Electric field effect tuning of electron-phonon coupling in graphene[J]. Physical Review Letters, 2007, 98(16): 166802.

[24] Zheng S W, Ren G B, Lin Z, et al. Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber[J]. Applied Optics, 2013, 52(19): 4541-4548.

[25] Qian J R, Huang W P. Coupled-mode theory for LP modes[J]. Journal of Lightwave Technology, 1986, 4(6): 619-625.

[26] Hao R, Du W, Li E P, et al. Graphene assisted TE/TM-independent polarizer based on Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2015, 27(10): 1112-1115.

[27] Zhou F, Du W. A graphene-based all-fiber TE/TM switchable polarizer[J]. Journal of Optics, 2018, 20(3): 035401.

[28] 朱博枫. 基于石墨烯等离激元及六方氮化硼的微纳光器件的研究[D]. 北京: 北京交通大学, 2017: 109- 117.

    Zhu BF. Study on micro-nano-optical devices based on graphene plasmons and hexagonal boron nitride[D]. Beijing: Beijing Jiaotong University, 2017: 109- 117.

[29] Park B J, Kim M K, Kim J T. Analysis of a graphene-based silicon electro-absorption modulator in isotropic and anisotropic graphene models[J]. Journal of the Korean Physical Society, 2017, 70(11): 967-972.

[30] Fan M Y, Yang H M, Zheng P F, et al. Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide[J]. Optics Express, 2017, 25(18): 21619-21629.

[31] Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.

[32] Xiao Y, Zhang J, Yu J, et al. Theoretical investigation of optical modulators based on graphene-coated side-polished fiber[J]. Optics Express, 2018, 26(11): 13759.

金丽丹, 宁提纲, 裴丽, 郑晶晶, 李晶, 贺雪晴. 基于石墨烯的D型双芯光纤调制器[J]. 光学学报, 2019, 39(5): 0506002. Lidan Jin, Tigang Ning, Li Pei, Jingjing Zheng, Jing Li, Xueqing He. Graphene-Based D-Shape Twin-Core Fiber Modulator[J]. Acta Optica Sinica, 2019, 39(5): 0506002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!