光学学报, 2017, 37 (3): 0323002, 网络出版: 2017-03-08   

打破光子晶体非线性Fano腔结构对称性实现单向传输

Achieving Nonreciprocal Transmission by Breaking Symmetry of Nonlinear Fano Cavity Structure in Photonic Crystals
胡金凤 1,2,*刘彬 1,2梁红勤 1,2刘娟 1,2
作者单位
1 南昌航空大学无损检测与光电传感技术及应用国家地方联合工程实验室, 江西 南昌 330063
2 南昌航空大学江西省光电检测技术工程实验室, 江西 南昌 330063
引用该论文

胡金凤, 刘彬, 梁红勤, 刘娟. 打破光子晶体非线性Fano腔结构对称性实现单向传输[J]. 光学学报, 2017, 37(3): 0323002.

Hu Jinfeng, Liu Bin, Liang Hongqin, Liu Juan. Achieving Nonreciprocal Transmission by Breaking Symmetry of Nonlinear Fano Cavity Structure in Photonic Crystals[J]. Acta Optica Sinica, 2017, 37(3): 0323002.

参考文献

[1] Scalora M, Dowling J P, Bowden C M, et al. The photonic band edge optical diode[J]. Journal of Applied Physics, 1994, 76(4): 2023-2026.

[2] Tocci M D, Bloemer M J, Scalora M, et al. Thin-film nonlinear optical diode[J]. Appl Phys Lett, 1995, 66(24): 2324-2326.

[3] Feise M W, Shadrivov I V, Kivshar Y S. Bistable diode action in left-handed periodic structures[J]. Phys Rev E, 2005, 71: 037602.

[4] Hu X Y, Chin X, Li Z Q, et al. Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons[J]. New Journal of Physics, 2010, 12(2): 023029.

[5] Xue C H, Jiang H T, Chen H. Highly efficient all-optical diode action based on light-tunneling heterostructures[J]. Opt Express, 2010, 18(7): 7479-7487.

[6] Khanikaev A B, Steel M J. Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices[J]. Opt Express, 2009, 17(7): 5265-5272.

[7] Callo K, Assanto G. All-optical diode in a periodically poled lithium niobate waveguide[J]. Appl Phys Lett, 2001, 79(3): 314-316.

[8] Philip R, Anija M, Yelleswarapu C S, et al. Passive all-optical diode using asymmetric nonlinear absorption[J]. Appl Phys Lett, 2007, 91(14): 141118.

[9] Konorov S O, Biryukov D A S, Bugar I, et al. Experimental demonstration of a photonic-crystal-fiber optical diode[J]. Applied Physics B, 2004, 78(5): 547-550.

[10] Hwang J, Song M H, Park B, et al. Electro-tunable optical diode based on photonic bandgap liquid crystal heterojunctions[J]. Nat Mater, 2005, 4(5): 383-387.

[11] Song M H, Park B, Takanishi Y, et al. Simple electro-tunable optical diode using photonic and anisotropic liquid crystal films[J]. Thin Solid Films, 2006, 509(1-2): 49-52.

[12] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059-2062.

[13] John S. Strong localization of photons in certain disordered dielectric[J]. Phys Rev Lett, 1987, 58(23): 2486-2489.

[14] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤[J]. 物理学报, 2009, 58(12): 8345-8351.

    Yang Qianqian, Hou Lantian. Octagonal photonic crystal fiber of birefringence[J]. Acta Phys Sin, 2009, 58(12): 8345-8351.

[15] Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.

[16] Lou Shuqin, Wang Zhi, Ren Guobin, et al. Polarization-maintaining photonic crystal fiber[J]. Chinese Physics B, 2004, 13(7): 1052-1058.

[17] 李珊珊, 郝 霞, 白晋军, 等. 偏振可调的太赫兹单模单偏振光子晶体光纤[J]. 中国激光, 2016, 43(9): 0901005.

    Li Shanshan, Hao Xia, Bai Jinjun, et al. Tunable terahertz single polarization single mode PCF[J]. Chinese J Lasers, 2016, 43(9): 0901005.

[18] 疏 静, 周兴平. 光子晶体耦合缺陷波导两通道解波分复用器[J]. 光子学报, 2014, 43(S1): 116002.

    Shu Jing, Zhou Xingping. Two channels wavelength division multiplexing based on photonic crystals coupled-cavity waveguides[J]. Acta Photonica Sinica, 2014, 43(S1): 116002.

[19] 周兴平, 疏 静. 基于光子晶体自准直效应的新型1×3分束器[J]. 光学学报, 2013, 33(4): 0423002.

    Zhou Xingping, Shu Jing. Novel 1×3 splitter based on photonic crystal self-collimation effect[J]. Acta Optica Sinica, 2013, 33(4): 0423002.

[20] 林 密, 邱文标, 郗 翔, 等. 基于二维光子晶体的具有偏振选择功能的TE/TM波三等分功率分配器[J]. 光学学报, 2016, 36(12): 1223001.

    Lin Mi, Qiu Wenbiao, Xi Xiang, et al. Three-equal-power splitters for TE and TM waves with additional polarization-selection function based on two-dimensional photonic crystals[J]. Acta Optica Sinica, 2016, 36(12): 1223001.

[21] 范庆斌, 李传起, 张秀容, 等. 环形线缺陷光子晶体滤波器的设计与数值研究[J]. 激光与光电子学进展, 2015, 52(1): 012301.

    Fan Qingbin, Li Chuanqi, Zhang Xiurong, et al. Design and numerical studies of annular line defect photonic crystal filter[J]. Laser & Optoelectronics Progress, 2015, 52(1): 012301.

[22] 谭春华, 黄旭光. 基于带隙可调的二维光子晶体全光开关[J]. 光学学报, 2010, 30(9): 2714-2718.

    Tan Chunhua, Huang Xuguang. An all-optical switch based on the tunable bandgap of a two-dimensional photonic crystal[J]. Acta Optica Sinica, 2010, 30(9): 2714-2718.

[23] 付云起, 袁乃昌, 温熙森. 微波光子晶体天线技术[M]. 北京: 国防工业出版社, 2004: 14-176.

    Fu Yunqi, Yuan Naichang, Wen Xisen. Microwave photonic crystals antenna technology[M]. Beijing: National Defence Industry Press, 2004: 14-176.

[24] Zhao N S, Zhou H, Guo Q, et al. Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules[J]. Journal of the Optical Society of America B, 2006, 23(11): 2434-2440.

[25] Lin X S, Wu W Q, Zhou H, et al. Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects[J]. Opt Express, 2006, 14(6): 2429-2439.

[26] Zhou H, Zhou K F, Hu W, et al. All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs[J]. Journal of Applied Physics, 2006, 99(12): 123111.

[27] Fan S H, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 2003, 20(3): 569-572.

[28] Heuck M, Kristensen P T, Elesin Y, et al. Improved switching using Fano resonances in photonic crystal structures[J]. Opt Lett, 2013, 38(14): 2466-2468.

胡金凤, 刘彬, 梁红勤, 刘娟. 打破光子晶体非线性Fano腔结构对称性实现单向传输[J]. 光学学报, 2017, 37(3): 0323002. Hu Jinfeng, Liu Bin, Liang Hongqin, Liu Juan. Achieving Nonreciprocal Transmission by Breaking Symmetry of Nonlinear Fano Cavity Structure in Photonic Crystals[J]. Acta Optica Sinica, 2017, 37(3): 0323002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!