无机材料学报, 2020, 35 (4): 461, 网络出版: 2021-03-01  

锌在林格氏液中的体外长期腐蚀降解行为 下载: 576次

Long-term in Vitro Corrosion Behavior of Zinc in Ringer’s Solution
作者单位
西南交通大学 材料科学与工程学院, 材料先进技术教育部重点实验室, 成都 610031
引用该论文

唐帅, 张文泰, 钱军余, 鲜鹏, 莫小山, 黄楠, 万国江. 锌在林格氏液中的体外长期腐蚀降解行为[J]. 无机材料学报, 2020, 35(4): 461.

Shuai TANG, Wentai ZHANG, Junyu QIAN, Peng XIAN, Xiaoshan MO, Nan HUANG, Guojiang WAN. Long-term in Vitro Corrosion Behavior of Zinc in Ringer’s Solution[J]. Journal of Inorganic Materials, 2020, 35(4): 461.

参考文献

[1] BOWEN PATRICKK, DRELICHJAROSLAW, GOLDMANJEREMY. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials, 2013,25(18):2577-2582.

[2] BOWEN PATRICKK, SHEARIER EMILYR, ZHAOSHAN, et al. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-Alloys. Advanced Healthcare Materials, 2016,5(10):1121-1140.

[3] MOSTAEDEHSAN, SIKORA-JASINSKAMALGORZATA, DRELICH JAROSLAWW, et al. Zinc-based alloys for degradable vascular stent applications. Acta Biomaterialia, 2018,71:1-23.

[4] BINBUM-HO, BHINJINHYUK, TAKAISHIMIKIRO, et al. Requirement of zinc transporter ZIP10 for epidermal development: implication of the ZIP10-p63 axis in epithelial homeostasis. Proceedings of the National Academy of Sciences, 2017,114(46):12243-12248.

[5] ZHUDONG-HUI, SUYING-CHAO, YOUNG MARCUSL, et al. Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials. ACS Applied materials & Interfaces, 2017,9(33):27453-27461.

[6] HAASEHAJO, RINKLOTHAR. Multiple impacts of zinc on immune function. Metallomics, 2014,6(7):1175-1180.

[7] LINSONG, WANGQI-LONG, YANXIN-HAO, et al. Mechanical properties, degradation behaviors and biocompatibility evaluation of a biodegradable Zn-Mg-Cu alloy for cardiovascular implants. Materials Letters, 2019,234:294-297.

[8] KAFRIALON, OVADIASHIRA, GOLDMANJEREMY, et al. The suitability of Zn-1.3% Fe alloy as a biodegradable implant material. Metals, 2018,8(3):153.

[9] SHIZHANG-ZHI, YUJING, LIUXUE-FENG, et al. Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8 Mn alloy. Materials Science and Engineering: C, 2019,99:969-978.

[10] ZHENGYU-FENG, WUYUAN-HAO. Revolutionizing metallic biomaterials. Acta Metallurgica Sinica, 2017,53(3):257-297.

[11] CHENYING-QI, ZHANGWEN-TAI, MAITZ MANFREDF, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline. Corrosion Science, 2016,111:541-555.

[12] TÖRNEKARIN, LARSSONMARIANN, NORLINANNA, et al. Degradation of zinc in saline solutions, plasma, and whole blood. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016,104(6):1141-1151.

[13] ZHAOLI-CHEN, ZHANGZHE, SONGYU-TING, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Materials & Design, 2016,108:136-144.

[14] LIULI-JUN, MENGYAO, DONGCHAO-FANG, et al. Initial formation of corrosion products on pure zinc in simulated body fluid. Journal of Materials Science & Technology, 2018,34(12):2271-2282.

[15] LIUXIAO, YANGHONG-TAO, LIUYANG, et al. Comparative studies on degradation behavior of pure zinc in various simulated body fluids. JOM, 2019,71(4):1414-1425.

[16] STANDARDASTM. G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2015.

[17] STANDARDASTM. G31-72. Standard practice for laboratory immersion corrosion testing of metals. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2004.

[18] SHIZHI-MING, LIUMING, ATRENSANDREJ. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion Science, 2010,52(2):579-588.

[19] HUANGJUN. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochimica Acta, 2018,281:170-188.

[20] WUJ, ZHANGSD, SUNWH, et al. Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings. Surface and Coatings Technology, 2018,335:205-218.

[21] SHIZHI-MING, CAOFU-YONG, SONGGUANG-LING, et al. Low apparent valence of Mg during corrosion. Corrosion Science, 2014,88:434-443.

[22] SIMõESAM, BASTOSAC, FERREIRAMG, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell. Corrosion Science, 2007,49(2):726-739.

[23] BLANDAGIUSEPPE, BRUCATOVALERIO, PAVIA FRANCESCOCARFì, et al. Galvanic deposition and characterization of brushite/ hydroxyapatite coatings on 316L stainless steel. Materials Science and Engineering: C, 2016,64:93-101.

唐帅, 张文泰, 钱军余, 鲜鹏, 莫小山, 黄楠, 万国江. 锌在林格氏液中的体外长期腐蚀降解行为[J]. 无机材料学报, 2020, 35(4): 461. Shuai TANG, Wentai ZHANG, Junyu QIAN, Peng XIAN, Xiaoshan MO, Nan HUANG, Guojiang WAN. Long-term in Vitro Corrosion Behavior of Zinc in Ringer’s Solution[J]. Journal of Inorganic Materials, 2020, 35(4): 461.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!