激光与光电子学进展, 2020, 57 (21): 210001, 网络出版: 2020-11-09   

多晶材料随机准相位匹配研究进展 下载: 1548次封面文章

Research Progress on Random Quasi-Phase Matching in Polycrystalline Materials
刘科飞 1,2钟凯 1,2,*姚建铨 1,2
作者单位
1 天津大学精密仪器与光电子工程学院激光与光电子研究所, 天津 300072
2 天津大学光电信息技术教育部重点实验室, 天津 300072
引用该论文

刘科飞, 钟凯, 姚建铨. 多晶材料随机准相位匹配研究进展[J]. 激光与光电子学进展, 2020, 57(21): 210001.

Liu Kefei, Zhong Kai, Yao Jianquan. Research Progress on Random Quasi-Phase Matching in Polycrystalline Materials[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210001.

参考文献

[1] Powers PE and Joseph WH. Fundamentals of nonlinear optics[M]. Boca Raton: CRC press, 2017.

[2] 姚建铨. 非线性光学频率变换及激光调谐技术[M]. 北京: 科学出版社, 1995.

    Yao JQ. Nonlinear optical frequency conversion and laser tuning technology[M]. Beijing: Science Press, 1995.

[3] Zhong K, Mei J L, Liu Y, et al. Widely tunable eye-safe optical parametric oscillator with noncollinear phase-matching in a ring cavity[J]. Optics Express, 2019, 27(8): 10449-10455.

[4] Yao JQ, Wang YY. Nonlinear optics and solid-state lasers: advanced concepts, tuning-fundamentals and applications[M]. Heidelberg: Springer, 2012.

[5] Zhong K, Shi W, Xu D G, et al. Optically pumped terahertz sources[J]. Science China Technological Sciences, 2017, 60(12): 1801-1818.

[6] PeyghambarianN, Koch SW. Semiconductor nonlinear materials[M] ∥Gibbs H M, Khitrova G, Peyghambarian N. Nonlinear photonics. Springer series in electronics and photonics.Heidelberg: Springer, 1990, 30: 7- 60.

[7] Baudrier-Raybaut M, Haïdar R, Kupecek P, et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials[J]. Nature, 2004, 432(7015): 374-376.

[8] Ru Q T, Lee N, Chen X, et al. Optical parametric oscillation in a random polycrystalline medium[J]. Optica, 2017, 4(6): 617-618.

[9] Morozov E Y, Chirkin A S. Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure[J]. Quantum Electronics, 2004, 34(3): 227-232.

[10] Ru Q T, Kawamori T, Lee N, et al. Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic[J]. Proceedings of SPIE, 2018, 1051: 1051615.

[11] Peticolas W L, Goldsborough J P, Rieckhoff K. Double photon excitation in organic crystals[J]. Physical Review Letters, 1963, 10(2): 43-45.

[12] Kurtz S K, Perry T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968, 39(8): 3798-3813.

[13] 贾俊荣, 薛小铃, 张红. CsSbSO4F2晶体的光学特性研究[J]. 人工晶体学报, 2019, 48(3): 394-397.

    Jia J R, Xue X L, Zhang H. Research on optical properties of CsSbSO4F2 crystal[J]. Journal of Synthetic Crystals, 2019, 48(3): 394-397.

[14] Tehranchi A, Kashyap R. Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides[J]. Optics Express, 2008, 16(23): 18970-18975.

[15] Dang W R, Chen Y P, Chen X F. Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice[J]. IEEE Photonics Technology Letters, 2012, 24(5): 347-349.

[16] Molina P. Ramírez M D L O, Bausá L. Strontium Barium niobate as a multifunctional two-dimensional nonlinear “photonic glass”[J]. Advanced Functional Materials, 2008, 18(5): 709-715.

[17] Kawai S, Ogawa T, Lee H, et al. Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals[J]. Applied Physics Letters, 1998, 73(6): 768-770.

[18] Trull J, Cojocaru C, Fischer R, et al. Second-harmonic parametric scattering in ferroelectric crystals with disordered nonlinear domain structures[J]. Optics Express, 2007, 15(24): 15868-15877.

[19] Wang W J, Roppo V, Kalinowski K, et al. Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media[J]. Optics Express, 2009, 17(22): 20117-20123.

[20] Roppo V, Wang W J, Kalinowski K, et al. The role of ferroelectric domain structure in second harmonic generation in random quadratic media[J]. Optics Express, 2010, 18(5): 4012-4022.

[21] Sheng Y, Ma D L, Krolikowski W. Randomized nonlinear photonic crystal for broadband optical frequency conversion[J]. Journal of Physics B, 2013, 46(21): 215401.

[22] Sheng Y, Chen X, Lukasiewicz T, et al. Calcium barium niobate as a functional material for broadband optical frequency conversion[J]. Optics Letters, 2014, 39(6): 1330-1332.

[23] Le Grand Y, Rouède D, Odin C, et al. Second-harmonic scattering by domains in RbH2PO4 ferroelectrics[J]. Optics Communications, 2001, 200(1/2/3/4/5/6): 249-260.

[24] Trabs P, Noack F, Aleksandrovsky A S, et al. Generation of coherent radiation in the vacuum ultraviolet using randomly quasi-phase-matched strontium tetraborate[J]. Optics Letters, 2016, 41(3): 618-621.

[25] SorokinE, Sorokina IT. Femtosecond operation and random quasi-phase-matched self-doubling of ceramic Cr: ZnSe laser[C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California. Washington, D.C.: OSA, 2010: CTuGG2.

[26] Šuminas R, Tamošauskas G, Valiulis G, et al. Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe[J]. Applied Physics Letters, 2017, 110(24): 241106.

[27] Vasilyev S, Moskalev I, Mirov M, et al. Mid-IR Kerr-lens mode-locked polycrystalline Cr∶ZnS and Cr∶ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching[J]. Proceedings of SPIE, 2016, 9731: 97310B.

[28] Vasilyev S, Moskalev I, Mirov M, et al. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr∶ZnS and Cr∶ZnSe[J]. Optical Materials Express, 2017, 7(7): 2636-2650.

[29] Vasilyev S, Smolski V, Peppers J, et al. Middle-IR frequency comb based on Cr∶ZnS laser[J]. Optics Express, 2019, 27(24): 35079-35087.

[30] Vasilyev S, Moskalev I, Smolski V, et al. Octave-spanning Cr∶ZnS femtosecond laser with intrinsic nonlinear interferometry[J]. Optica, 2019, 6(2): 126-127.

[31] Vasilyev S, Moskalev I S, Smolski V O, et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses[J]. Optica, 2019, 6(1): 111-114.

[32] Vasilyev S, Moskalev I, Smolski V, et al. Multi-octave visible to long-wave IR femtosecond continuum generated in Cr∶ZnS-GaSe tandem[J]. Optics Express, 2019, 27(11): 16405-16413.

[33] Zhang J, Fritsch K, Wang Q, et al. Intra-pulse difference-frequency generation of mid-infrared (2.7--20 μm) by random quasi-phase-matching[J]. Optics Letters, 2019, 44(12): 2986-2989.

[34] Kupfer R, Quevedo H J, Smith H L, et al. Cascade random-quasi-phase-matched harmonic generation in polycrystalline ZnSe[J]. Journal of Applied Physics, 2018, 124(24): 243102.

[35] Ru QT, KawamoriT, VasilyevS, et al. Broadband randomly phase matched OPO using a thin 0.5-mm ZnSe ceramic and a dispersion-free cavity[C]∥Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA, 2019: STh3J. 6.

[36] Yu Morozov E, Kaminskii A, Chirkin A S, et al. Second optical harmonic generation in nonlinear crystals with a disordered domain structure[J]. Journal of Experimental and Theoretical Physics Letters, 2001, 73(12): 647-650.

[37] Vidal X, Martorell J. Generation of light in media with a random distribution of nonlinear domains[J]. Physical Review Letters, 2006, 97(1): 013902.

[38] Kawamori T, Ru Q T, Vodopyanov K L. Comprehensive model for randomly phase-matched frequency conversion in zinc-blende polycrystals and experimental results for ZnSe[J]. Physical Review Applied, 2019, 11(5): 054015.

[39] Marsaglia G. Choosing a point from the surface of a sphere[J]. Annals of Mathematical Statistics, 1972, 43(2): 645-646.

[40] Muller M E. A note on a method for generating points uniformly on n-dimensional spheres[J]. Communications of the ACM, 1959, 2(4): 19-20.

[41] 熊兆贤. 陶瓷材料的分形研究[M]. 北京: 科学出版社, 2000: 44- 56.

    Xiong ZX. Fractal study of ceramic materials[M]. Beijing: Science Press, 2000: 44- 56.

[42] Chen X, Gaume R. Non-stoichiometric grain-growth in ZnSe ceramics for χ(2) interaction[J]. Optical Materials Express, 2019, 9(2): 400-409.

[43] 曹金波. 电子陶瓷材料的几何建模与有限元分析[D]. 天津: 天津大学, 2006.

    Cao JB. Geometrical modeling and FEM analysis of electronic ceramics[D]. Tianjin: Tianjin University, 2006.

[44] 王云飞. 有限变形下三维多晶金属建模及数值模拟分析[D]. 西安: 西安电子科技大学, 2018

    Wang YF. 3D modeling and numerical simulation analysis for polycrystalline metal under finite deformation[D]. Xi'an :Xidian University, 2018.

[45] 顾春飞. 轧制镁合金棘轮行为研究及微观组织数值模拟[D]. 南京: 南京理工大学, 2012.

    Gu CF. Research on ratcheting of rolling magnesium alloy and microstructure simulation[D]. Nanjing: Nanjing University of Science and Technology, 2012.

[46] 张丰果. 基于多晶体塑性模型的微镦粗过程数值模拟[D]. 上海: 上海交通大学, 2011.

    Zhang FG. Numerical simulation of micro-upsetting process in polycrystalline plasticity model[D]. Shanghai: Shanghai JiaoTong University, 2011.

[47] 方斌. 烧结过程中陶瓷刀具材料微观组织结构演变模拟研究[D]. 济南: 山东大学, 2007.

    FangB. Simulation study on microstructure evolution of ceramic tool materials during fabrication[D]. Jinan: Shandong University, 2007.

[48] 周元康, 孙丽华, 李晔. 陶瓷表面技术[M]. 北京: 国防工业出版社, 2007: 249- 276.

    Zhou YK, Sun LH, LiY. Ceramic surface technology[M]. Beijing: National Defense Industry Press, 2007: 249- 276.

[49] Benedetti I, Barbe F. Modelling polycrystalline materials: an overview of three-dimensional grain-scale mechanical models[J]. Journal of Multiscale Modelling, 2013, 5(1): 1350002.

[50] JiangZ, ZhaoJ, XieH. Microforming technology: theory, simulation and practice[M]. New York: Academic Press, 2017: 271- 272.

刘科飞, 钟凯, 姚建铨. 多晶材料随机准相位匹配研究进展[J]. 激光与光电子学进展, 2020, 57(21): 210001. Liu Kefei, Zhong Kai, Yao Jianquan. Research Progress on Random Quasi-Phase Matching in Polycrystalline Materials[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!