激光与光电子学进展, 2019, 56 (11): 110701, 网络出版: 2019-06-13   

基于光纤的光学傅里叶变换实现方法及应用 下载: 1349次

Application and Implementation of Optical Fourier Transform Based on Optical Fiber
作者单位
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
引用该论文

孔梦龙, 谭中伟, 张琳. 基于光纤的光学傅里叶变换实现方法及应用[J]. 激光与光电子学进展, 2019, 56(11): 110701.

Menglong Kong, Zhongwei Tan, Lin Zhang. Application and Implementation of Optical Fourier Transform Based on Optical Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110701.

参考文献

[1] Papoulis A. Pulse compression, fiber communications, and diffraction: a unified approach[J]. Journal of the Optical Society of America A, 1994, 11(1): 3-13.

    Papoulis A. Pulse compression, fiber communications, and diffraction: a unified approach[J]. Journal of the Optical Society of America A, 1994, 11(1): 3-13.

[2] Berger N K, Levit B, Atkins S, et al. Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation[J]. Electronics Letters, 2000, 36(19): 1644-1646.

    Berger N K, Levit B, Atkins S, et al. Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation[J]. Electronics Letters, 2000, 36(19): 1644-1646.

[3] Kolner B H, Nazarathy M. Temporal imaging with a time lens[J]. Optics Letters, 1989, 14(12): 630-632.

    Kolner B H, Nazarathy M. Temporal imaging with a time lens[J]. Optics Letters, 1989, 14(12): 630-632.

[4] Kolner B H. Space-time duality and the theory of temporal imaging[J]. IEEE Journal of Quantum Electronics, 1994, 30(8): 1951-1963.

    Kolner B H. Space-time duality and the theory of temporal imaging[J]. IEEE Journal of Quantum Electronics, 1994, 30(8): 1951-1963.

[5] Bennett C V, Kolner B H. Principles of parametric temporal imaging: Part I: System configurations[J]. IEEE Journal of Quantum Electronics, 2000, 36(4): 430-437.

    Bennett C V, Kolner B H. Principles of parametric temporal imaging: Part I: System configurations[J]. IEEE Journal of Quantum Electronics, 2000, 36(4): 430-437.

[6] Ng T T, Parmigiani F, Ibsen M, et al. Compensation of linear distortions by using XPM with parabolic pulses as a time lens[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1097-1099.

    Ng T T, Parmigiani F, Ibsen M, et al. Compensation of linear distortions by using XPM with parabolic pulses as a time lens[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1097-1099.

[7] Salem R, Foster M A, Turner A C, et al. Optical time lens based on four-wave mixing on a silicon chip[J]. Optics Letters, 2008, 33(10): 1047-1049.

    Salem R, Foster M A, Turner A C, et al. Optical time lens based on four-wave mixing on a silicon chip[J]. Optics Letters, 2008, 33(10): 1047-1049.

[8] Goda K, Solli D R, Tsia K K, et al. Theory of amplified dispersive Fourier transformation[J]. Physical Review A, 2009, 80(4): 043821.

    Goda K, Solli D R, Tsia K K, et al. Theory of amplified dispersive Fourier transformation[J]. Physical Review A, 2009, 80(4): 043821.

[9] Solli D R, Chou J, Jalali B. Amplified wavelength-time transformation for real-time spectroscopy[J]. Nature Photonics, 2008, 2(1): 48-51.

    Solli D R, Chou J, Jalali B. Amplified wavelength-time transformation for real-time spectroscopy[J]. Nature Photonics, 2008, 2(1): 48-51.

[10] Fetterman H R, Tannenwald P E, Parker C D, et al. Real-time spectral analysis of far-infrared laser pulses using an SAW dispersive delay line[J]. Applied Physics Letters, 1979, 34(2): 123-125.

    Fetterman H R, Tannenwald P E, Parker C D, et al. Real-time spectral analysis of far-infrared laser pulses using an SAW dispersive delay line[J]. Applied Physics Letters, 1979, 34(2): 123-125.

[11] Salem R, Foster M A, Gaeta A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 2013, 5(3): 274-317.

    Salem R, Foster M A, Gaeta A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 2013, 5(3): 274-317.

[12] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112.

    Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112.

[13] 包文强, 于晋龙, 王文睿. 基于光电振荡器的高速率光采样技术[J]. 激光与光电子学进展, 2018, 55(6): 060701.

    包文强, 于晋龙, 王文睿. 基于光电振荡器的高速率光采样技术[J]. 激光与光电子学进展, 2018, 55(6): 060701.

    Bao W Q, Yu J L, Wang W R. High-rate optical sampling technology based on photoelectric oscillator[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060701.

    Bao W Q, Yu J L, Wang W R. High-rate optical sampling technology based on photoelectric oscillator[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060701.

[14] Tong Y C, Chan L Y, Tsang H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 1997, 33(11): 983-985.

    Tong Y C, Chan L Y, Tsang H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 1997, 33(11): 983-985.

[15] Muriel M A, Azaña J, Carballar A. Real-time Fourier transformer based on fiber gratings[J]. Optics Letters, 1999, 24(1): 1-3.

    Muriel M A, Azaña J, Carballar A. Real-time Fourier transformer based on fiber gratings[J]. Optics Letters, 1999, 24(1): 1-3.

[16] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263-1276.

    Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263-1276.

[17] Diebold E D, Hon N K, Tan Z W, et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide[J]. Optics Express, 2011, 19(24): 23809.

    Diebold E D, Hon N K, Tan Z W, et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide[J]. Optics Express, 2011, 19(24): 23809.

[18] Hult J, Watt R S, Kaminski C F. High bandwidth absorption spectroscopy with a dispersed supercontinuum source[J]. Optics Express, 2007, 15(18): 11385.

    Hult J, Watt R S, Kaminski C F. High bandwidth absorption spectroscopy with a dispersed supercontinuum source[J]. Optics Express, 2007, 15(18): 11385.

[19] Nuruzzaman A, Boyraz O, Jalali B . Time-stretched short-time Fourier transform[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(2): 598-602.

    Nuruzzaman A, Boyraz O, Jalali B . Time-stretched short-time Fourier transform[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(2): 598-602.

[20] Han Y, Jalali B. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations[J]. Journal of Lightwave Technology, 2003, 21(12): 3085-3103.

    Han Y, Jalali B. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations[J]. Journal of Lightwave Technology, 2003, 21(12): 3085-3103.

[21] Dorrer C. Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning[J]. Optics Letters, 2006, 31(4): 540-542.

    Dorrer C. Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning[J]. Optics Letters, 2006, 31(4): 540-542.

[22] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 2009, 458(7242): 1145-1149.

    Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 2009, 458(7242): 1145-1149.

[23] 沈毅, 陈志彦, 邱建榕, 等. 并行谱域光学相干层析成像技术的研究进展[J]. 中国激光, 2018, 45(2): 0207004.

    沈毅, 陈志彦, 邱建榕, 等. 并行谱域光学相干层析成像技术的研究进展[J]. 中国激光, 2018, 45(2): 0207004.

    Shen Y, Chen Z Y, Qiu J R, et al. Research progress on parallel spectral domain optical coherence tomography technology[J]. Chinese Journal of Lasers, 2018, 45(2): 0207004.

    Shen Y, Chen Z Y, Qiu J R, et al. Research progress on parallel spectral domain optical coherence tomography technology[J]. Chinese Journal of Lasers, 2018, 45(2): 0207004.

[24] Park Y, Ahn T J, Kieffer J C, et al. Optical frequency domain reflectometry based on real-time Fourier transformation[J]. Optics Express, 2007, 15(8): 4597-4616.

    Park Y, Ahn T J, Kieffer J C, et al. Optical frequency domain reflectometry based on real-time Fourier transformation[J]. Optics Express, 2007, 15(8): 4597-4616.

[25] Goda K, Fard A, Malik O, et al. High-throughput optical coherence tomography at 800 nm[J]. Optics Express, 2012, 20(18): 19612-19617.

    Goda K, Fard A, Malik O, et al. High-throughput optical coherence tomography at 800 nm[J]. Optics Express, 2012, 20(18): 19612-19617.

[26] van Howe J, Xu C. Ultrafast optical signal processing based upon space-time dualities[J]. Journal of Lightwave Technology, 2006, 24(7): 2649-2662.

    van Howe J, Xu C. Ultrafast optical signal processing based upon space-time dualities[J]. Journal of Lightwave Technology, 2006, 24(7): 2649-2662.

[27] 李博. 新型时间透镜及其在超快光信号处理中的应用研究[D]. 北京: 北京交通大学, 2015.

    李博. 新型时间透镜及其在超快光信号处理中的应用研究[D]. 北京: 北京交通大学, 2015.

    LiB. Novel time lenses and their applications in ultrafast optical signal processing[D]. Beijing: Beijing Jiaotong University, 2015.

    LiB. Novel time lenses and their applications in ultrafast optical signal processing[D]. Beijing: Beijing Jiaotong University, 2015.

[28] 叶斐. 一种高速光纤频域强度调制直接探测传输系统的研究[D]. 武汉: 华中科技大学, 2011.

    叶斐. 一种高速光纤频域强度调制直接探测传输系统的研究[D]. 武汉: 华中科技大学, 2011.

    YeF. The research of an optical fiber spectrum intensity modulation direct detection transmission system[D]. Wuhan: Huazhong University of Science and Technology, 2011.

    YeF. The research of an optical fiber spectrum intensity modulation direct detection transmission system[D]. Wuhan: Huazhong University of Science and Technology, 2011.

[29] Nakazawa M, Hirooka T, Futami F, et al. Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses[J]. IEEE Photonics Technology Letters, 2004, 16(4): 1059-1061.

    Nakazawa M, Hirooka T, Futami F, et al. Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses[J]. IEEE Photonics Technology Letters, 2004, 16(4): 1059-1061.

[30] 约瑟夫·古德曼. 傅里叶光学导论[M]. 秦克诚, 刘培森,陈家壁,等, 译. 3版. 北京: 电子工业出版社, 2011: 73- 77.

    约瑟夫·古德曼. 傅里叶光学导论[M]. 秦克诚, 刘培森,陈家壁,等, 译. 3版. 北京: 电子工业出版社, 2011: 73- 77.

    JosephW. Coodman. Introduction to Fourier optics[M]. Qin K C, Liu P S, Chen J B, et al., Transl. 3rd ed. Beijing: Publishing House of Electronics Industry, 2011: 73- 77.

    JosephW. Coodman. Introduction to Fourier optics[M]. Qin K C, Liu P S, Chen J B, et al., Transl. 3rd ed. Beijing: Publishing House of Electronics Industry, 2011: 73- 77.

[31] Foster M A, Salem R, Geraghty D F, et al. Silicon-chip-based ultrafast optical oscilloscope[J]. Nature, 2008, 456(7218): 81-84.

    Foster M A, Salem R, Geraghty D F, et al. Silicon-chip-based ultrafast optical oscilloscope[J]. Nature, 2008, 456(7218): 81-84.

[32] Kauffman M T, Banyai W C, Godil A A, et al. Time-to-frequency converter for measuring picosecond optical pulses[J]. Applied Physics Letters, 1994, 64(3): 270-272.

    Kauffman M T, Banyai W C, Godil A A, et al. Time-to-frequency converter for measuring picosecond optical pulses[J]. Applied Physics Letters, 1994, 64(3): 270-272.

[33] 李博, 谭中伟, 张晓兴. 利用电光相位调制和交叉相位调制制作时间透镜的实验及仿真分析[J]. 物理学报, 2011, 60(8): 084204.

    李博, 谭中伟, 张晓兴. 利用电光相位调制和交叉相位调制制作时间透镜的实验及仿真分析[J]. 物理学报, 2011, 60(8): 084204.

    Li B, Tan Z W, Zhang X X. Experiment and simulation of time lens using electro-optic phase modulation and cross phase modulation[J]. Acta Physica Sinica, 2011, 60(8): 084204.

    Li B, Tan Z W, Zhang X X. Experiment and simulation of time lens using electro-optic phase modulation and cross phase modulation[J]. Acta Physica Sinica, 2011, 60(8): 084204.

[34] Mendlovic D, Melamed O, Ozaktas H M. Compact optical temporal processors[J]. Applied Optics, 1995, 34(20): 4113-4118.

    Mendlovic D, Melamed O, Ozaktas H M. Compact optical temporal processors[J]. Applied Optics, 1995, 34(20): 4113-4118.

[35] Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 1964, 10(2): 139-145.

    Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 1964, 10(2): 139-145.

[36] Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping[J]. Journal of the Optical Society of America B, 1988, 5(8): 1563-1572.

    Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping[J]. Journal of the Optical Society of America B, 1988, 5(8): 1563-1572.

孔梦龙, 谭中伟, 张琳. 基于光纤的光学傅里叶变换实现方法及应用[J]. 激光与光电子学进展, 2019, 56(11): 110701. Menglong Kong, Zhongwei Tan, Lin Zhang. Application and Implementation of Optical Fourier Transform Based on Optical Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110701.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!