光学学报, 2020, 40 (18): 1827001, 网络出版: 2020-08-27   

基于三拉盖尔高斯腔的机械振子基态冷却研究 下载: 903次

Ground-State Cooling of Mechanical Resonator in Three-Laguerre-Gaussian-Cavity
王婧 *
作者单位
通化师范学院物理学院, 吉林 通化 134000
引用该论文

王婧. 基于三拉盖尔高斯腔的机械振子基态冷却研究[J]. 光学学报, 2020, 40(18): 1827001.

Jing Wang. Ground-State Cooling of Mechanical Resonator in Three-Laguerre-Gaussian-Cavity[J]. Acta Optica Sinica, 2020, 40(18): 1827001.

参考文献

[1] 陆繁. 基于腔结构的可控量子纠缠[J]. 激光与光电子学进展, 2019, 56(4): 042701.

    Fan L. Controllable quantum entanglement based on cavity structure[J]. Laser & Optoelectronics Progress, 2019, 56(4): 042701.

[2] 林杰. 直接耦合腔中通过耗散通道制备Bell态[J]. 激光与光电子学进展, 2019, 56(24): 242703.

    Lin J. Preparing Bell state by using dissipative process in directly coupled cavities[J]. Laser & Optoelectronics Progress, 2019, 56(24): 242703.

[3] Agarwal G S, Huang S M. Electromagnetically induced transparency in mechanical effects of light[J]. Physical Review A, 2010, 81(4): 041803.

[4] Yan X B. Optomechanically induced transparency and gain[J]. Physical Review A, 2020, 101(4): 043820.

[5] Wang T, Zheng M H, Bai C H, et al. Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system[J]. Annalen der Physik, 2018, 530(10): 1800228.

[6] Yang Q, Hou B P, Lai D. Local modulation of double optomechanically induced transparency and amplification[J]. Optics Express, 2017, 25(9): 9697-9711.

[7] Maayani S, Dahan R, Kligerman Y, et al. Flying couplers above spinning resonators generate irreversible refraction[J]. Nature, 2018, 558(7711): 569-572.

[8] Li B J, Huang R, Xu X W, et al. Nonreciprocal unconventional photon blockade in a spinning optomechanical system[J]. Photonics Research, 2019, 7(6): 000630.

[9] Jiang C, Song L N, Li Y. Directional amplifier in an optomechanical system with optical gain[J]. Physical Review A, 2018, 97(5): 053812.

[10] He B, Yang L, Jiang X S, et al. Transmission nonreciprocity in a mutually coupled circulating structure[J]. Physical Review Letters, 2018, 120(20): 203904.

[11] Yan X B, Lu H L, Gao F, et al. Perfect optical nonreciprocity in a double-cavity optomechanical system[J]. Frontiers of Physics, 2019, 14(5): 52601.

[12] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性[J]. 物理学报, 2019, 68(17): 170701.

    Zhang L W, Li X L, Yang L. Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics[J]. Acta Physical Sinica, 2019, 68(17): 170701.

[13] Bai C H, Wang D Y, Zhang S, et al. Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system[J]. Annalen der Physik, 2019, 531(7): 1800271.

[14] Wang J, Tian X D, Liu Y M, et al. Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms[J]. Laser Physics, 2018, 28(6): 065202.

[15] Yan X B, Deng Z J, Tian X D, et al. Entanglement optimization of filtered output fields in cavity optomechanics[J]. Optics Express, 2019, 27(17): 24393-24402.

[16] Lu X Y, Liao J Q, Tian L, et al. Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity[J]. Physical Review A, 2015, 91(1): 013834.

[17] Agarwal G S, Huang S M. Strong mechanical squeezing and its detection[J]. Physical Review A, 2016, 93(4): 043844.

[18] Genes C, Ritsch H, Drewsen M, et al. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency[J]. Physical Review A, 2011, 84(5): 051801.

[19] Guo Y J, Li K, Nie W J, et al. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system[J]. Physical Review A, 2014, 90(5): 053841.

[20] Liu Y M, Bai C H, Wang D Y, et al. Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble[J]. Optics Express, 2018, 26(5): 6143-6157.

[21] Li L C, Luo R H, Liu L J, et al. Double-passage ground-state cooling induced by quantum interference in the hybrid optomechanical system[J]. Scientific Reports, 2018, 8(1): 14276.

[22] Zhang S, Zhang J Q, Zhang J, et al. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom[J]. Optics Express, 2014, 22(23): 28118-28131.

[23] Liu Y C, Xiao Y F, Luan X S, et al. Coupled cavities for motional ground-state cooling and strong optomechanical coupling[J]. Physical Review A, 2015, 91(3): 033818.

[24] Lai D G, Zou F, Hou B P, et al. Simultaneous cooling of coupled mechanical resonators in cavity optomechanics[J]. Physical Review A, 2018, 98(2): 023860.

[25] Xia K Y, Evers J. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference[J]. Physical Review Letters, 2009, 103(22): 227203.

[26] Wu Q. Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system[J]. Chinese Physics B, 2016, 25(1): 010304.

[27] Cohadon P F, Heidmann A, Pinard M. Cooling of a mirror by radiation pressure[J]. Physical Review Letters, 1999, 83(16): 3174-3177.

[28] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Reviews of Modern Physics, 2014, 86(4): 1391.

[29] 王琦, 戈燕, 刘练珍, 等. 混合原子光机械系统中的量子相干控制[J]. 光学学报, 2016, 36(11): 1102001.

    Wang Q, Ge Y, Liu L Z, et al. Quantum coherent control in hybrid atom optomechanical systems[J]. Acta Optica Sinica, 2016, 36(11): 1102001.

[30] 郭永宾, 肖银, 於亚飞, 等. 光学学报[J]. . 非线性光机械系统中的双稳性与纠缠., 2015, 35(10): 1027002.

    Guo Y B, Xiao Y, Yu Y F, et al. Optical bistability and entanglement in a nonlinear optomechanical system[J]. Acta Optica Sinica, 2015, 35(10): 1027002.

[31] Genes C, Vitali D, Tombesi P, et al. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes[J]. Physical Review A, 2008, 77(3): 033804.

[32] Bhattacharya M, Giscard P, Meystre P. Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror[J]. Physical Review A, 2008, 77(1): 013827.

[33] Bhattacharya M, Meystre P. Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror[J]. Physical Review Letters, 2007, 99(15): 153603.

[34] 刘禹沐. 腔光力系统中机械振子基态冷却研究[D]. 延吉: 延边大学, 2019.

    Liu YM. Study on ground state cooling of mechanical resonator based on optomechanical system[D]. Yanji: Yanbian University, 2019.

王婧. 基于三拉盖尔高斯腔的机械振子基态冷却研究[J]. 光学学报, 2020, 40(18): 1827001. Jing Wang. Ground-State Cooling of Mechanical Resonator in Three-Laguerre-Gaussian-Cavity[J]. Acta Optica Sinica, 2020, 40(18): 1827001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!