不同路径下散射介质对计算关联成像的影响
下载: 700次
刘保磊, 杨照华, 曲少凡, 张艾昕, 吴令安. 不同路径下散射介质对计算关联成像的影响[J]. 光学学报, 2016, 36(10): 1026017.
Liu Baolei, Yang Zhaohua, Qu Shaofan, Zhang Aixin, Wu Ling’an. Influence of Turbid Media at Different Locations in Computational Ghost Imaging[J]. Acta Optica Sinica, 2016, 36(10): 1026017.
[1] Wang L, Ho P P, Liu C, et al. Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate[J]. Science, 1991, 253(5021): 769-771.
[2] Gayen S K, Alrubaiee M, Alfano R R. Time-gated backscattered ballistic light imaging of objects in turbid water[J]. Applied Physics Letters, 2005, 86(1): 011115.
[3] Liang J, Ren L, Ju H, et al. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization[J]. Optics Express, 2015, 23(20): 26146-26157.
[4] Katz O, Small E, Bromberg Y, et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 2011, 5(6): 372-377.
[5] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5): 283-292.
[6] Bertolotti J, van Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.
[7] Lerosey G, de Rosny J, Tourin A, et al. Focusing beyond the diffraction limit with far-field time reversal[J]. Science, 2007, 315(5815): 1120-1122.
[8] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429.
[9] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 1995, 74(18): 3600.
[10] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.
[11] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 2005, 94(18): 183602.
[12] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 2005, 30(18): 2354-2356.
[13] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 2014, 39(8): 2314-2317.
[14] 张明辉, 魏青, 沈夏, 等. 基于统计光学的无透镜鬼成像数值模拟与实验验证[J]. 光学学报, 2007, 27(10): 1858-1866.
[15] 陈涛, 李正炜, 王建立. 应用压缩传感理论的单像素相机成像系统[J]. 光学 精密工程, 2012, 20(11): 2523-2530.
[16] 刘雪峰, 姚旭日, 李明飞, 等. 强度涨落在热光鬼成像中的作用[J]. 物理学报, 2013, 62(18): 184205.
Liu Xuefeng, Yao Xuri, Li Mingfei, et al. The role of intensity fluctuations in thermal ghost imaging[J]. Acta Physica Sinica, 2013, 62(18): 184205.
[17] 陈超, 赵生妹. 高阶差值筛选鬼成像方案研究[J]. 光学学报, 2014 34(6): 0611002.
[19] 韩申生, 龚文林, 陈明亮, 等. 基于稀疏和冗余表象的鬼成像雷达研究进展[J]. 红外与激光工程, 2015, 44(9): 2547-2555.
[20] 张伟良, 张闻文, 何睿清, 等. 基于局部Hadamard调制的迭代去噪鬼成像[J]. 光学学报, 2015, 36(4): 0411001.
Zhang Weiliang, Zhang Wenwen, He Ruiqing, et al. Iterative denoising ghost imaging based on local hadamard modulation[J]. Acta Optica Sinica, 2016, 36(4): 0411001.
[21] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123.
[22] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 2016, 6.
[23] Chen M, Li E, Gong W, et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 2013, 3(02): 83.
[24] Zhang P, Gong W, Shen X, et al. Correlated imaging through atmospheric turbulence[J]. Physical Review A, 2010, 82(3): 033817.
[25] Cheng J, Lin J. Unified theory ofthermal ghost imaging and ghost diffraction through turbulent atmosphere[J]. Physical Review A, 2013, 87(4): 043810.
[26] Gong W, Han S. Correlated imaging in scattering media[J]. Optics Letters, 2011, 36(3): 394-396.
[27] Bina M, Magatti D, Molteni M, et al. Backscattering differential ghost imaging in turbid media[J]. Physical Review Letters, 2013, 110(8): 083901.
[28] Xu Y K, Liu W T, Zhang E F, et al. Is ghost imaging intrinsically more powerful against scattering [J]. Optics Express, 2015, 23(26): 32993-33000.
[29] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.
[30] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 053840.
[31] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20): 23068-23074.
[32] Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M]. Manhattan: John Wiley & Sons, 2008.
[33] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: High-order correlations v.s. background subtraction[J]. Optics Express, 2010, 18(6): 5562-5573.
刘保磊, 杨照华, 曲少凡, 张艾昕, 吴令安. 不同路径下散射介质对计算关联成像的影响[J]. 光学学报, 2016, 36(10): 1026017. Liu Baolei, Yang Zhaohua, Qu Shaofan, Zhang Aixin, Wu Ling’an. Influence of Turbid Media at Different Locations in Computational Ghost Imaging[J]. Acta Optica Sinica, 2016, 36(10): 1026017.