Photonics Research, 2018, 6 (3): 03000214, Published Online: Jul. 10, 2018  

High-speed and high-performance polarization-based quantum key distribution system without side channel effects caused by multiple lasers Download: 528次

Author Affiliations
1 Photonic/Wireless Convergence Components Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
2 School of Advanced Device Technology, University of Science & Technology, Daejeon 34113, South Korea
3 e-mail: seagod.ko@etri.re.kr
Copy Citation Text

Heasin Ko, Byung-Seok Choi, Joong-Seon Choe, Kap-Joong Kim, Jong-Hoi Kim, Chun Ju Youn. High-speed and high-performance polarization-based quantum key distribution system without side channel effects caused by multiple lasers[J]. Photonics Research, 2018, 6(3): 03000214.

References

[1] J. Y. Wang, B. Yang, S. K. Liao, L. Zhang, Q. Shen, X. F. Hu, J. C. Wu, S. J. Yang, H. Jiang, Y. L. Tang, B. Zhong, H. Liang, W. Y. Liu, Y. H. Hu, Y. M. Huang, B. Qi, J. G. Ren, G. S. Pan, J. Yin, J. J. Jia, Y. A. Chen, K. Chen, C. Z. Peng, J. W. Pan. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat. Photonics, 2013, 7: 387-393.

[2] S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter. Air-to-ground quantum communication. Nat. Photonics, 2013, 7: 382-386.

[3] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, H. Weinfurter. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett., 2007, 98: 010504.

[4] S. K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y. H. Gong, Y. Li, Z. H. Lin, G. S. Pan, J. S. Pelc, M. M. Fejer, W. Z. Zhang, W. Y. Liu, J. Yin, J. G. Ren, X. B. Wang, Q. Zhang, C. Z. Peng, J. W. Pan. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photonics, 2017, 11: 509-513.

[5] J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, J. W. Pan. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356: 1140-1144.

[6] S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, J. W. Pan. Satellite-to-ground quantum key distribution. Nature, 2017, 549: 43-47.

[7] H. Ko, K. Lim, J. Oh, J. K. K. Rhee. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system. Quantum Inf. Process., 2016, 15: 4265-4282.

[8] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics, 2010, 4: 686-689.

[9] S. Nauerth, M. Furst, T. Schmitt-Manderbach, H. Weier, H. Weinfurter. Information leakage via side channels in freespace BB84 quantum cryptography. New J. Phys., 2009, 11: 065001.

[10] K. Nakata, A. Tomita, M. Fujiwara, K. I. Yoshino, A. Tajima, A. Okamoto, K. Ogawa. Intensity fluctuation of a gain-switched semiconductor laser for quantum key distribution systems. Opt. Express, 2017, 25: 622-634.

[11] H. Ko, B. S. Choi, J. S. Choe, K. J. Kim, J. H. Kim, C. J. Youn. Critical side channel effects in random bit generation with multiple semiconductor lasers in a polarization-based quantum key distribution system. Opt. Express, 2017, 25: 20045-20055.

[12] BennettC. H.BrassardG., “Quantum cryptography: public key distribution and coin tossing,” in IEEE International Conference on Computers, Systems, and Signal Processing (1984), pp. 175179.

[13] ColdrenL. A.CorzineS. W.MashanovitchM. L., Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

[14] M. Dusek, M. Jahma, N. Lutkenhaus. Unambiguous state discrimination in quantum cryptography with weak coherent states. Phys. Rev. A, 2000, 62: 022306.

[15] G. Brassard, N. Lutkenhaus, T. Mor, B. C. Sanders. Limitations on practical quantum cryptography. Phys. Rev. Lett., 2000, 85: 1330-1333.

[16] X. B. Wang, C. Z. Peng, J. Zhang, L. Yang, J. W. Pan. General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A, 2008, 77: 042311.

[17] M. Hayashi, R. Nakayama. Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths. New J. Phys., 2014, 16: 063009.

[18] A. Mizutani, M. Curty, C. C. W. Lim, N. Imoto, K. Tamaki. Finite-key security analysis of quantum key distribution with imperfect light sources. New J. Phys., 2015, 17: 093011.

[19] W. Y. Hwang. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett., 2003, 91: 057901.

[20] H. K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 2005, 94: 230504.

[21] X. Ma, B. Qi, Y. Zhao, H. K. Lo. Practical decoy state for quantum key distribution. Phys. Rev. A, 2005, 72: 012326.

Heasin Ko, Byung-Seok Choi, Joong-Seon Choe, Kap-Joong Kim, Jong-Hoi Kim, Chun Ju Youn. High-speed and high-performance polarization-based quantum key distribution system without side channel effects caused by multiple lasers[J]. Photonics Research, 2018, 6(3): 03000214.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!