Photonics Research, 2018, 6 (6): 06000535, Published Online: Jul. 2, 2018   

High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber

Author Affiliations
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
3 College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
Copy Citation Text

Jintao Wang, Zike Jiang, Hao Chen, Jiarong Li, Jinde Yin, Jinzhang Wang, Tingchao He, Peiguang Yan, Shuangchen Ruan. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber[J]. Photonics Research, 2018, 6(6): 06000535.

References

[1] R. I. Woodward, E. J. Kelleher. 2D saturable absorbers for fibre lasers. Appl. Sci., 2015, 5: 1440-1456.

[2] F. Ilday, J. Buckley, W. Clark, F. Wise. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett., 2004, 92: 213902.

[3] H. Li, H. Xia, C. Lan, C. Li, X. Zhang, J. Li, Y. Liu. Passively Q-switched erbium-doped fiber laser based on few-layer MoS2 saturable absorber. IEEE Photon. Tech. Lett., 2015, 27: 69-72.

[4] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 2009, 19: 3077-3083.

[5] Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, K. P. Loh. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res., 2011, 4: 297-307.

[6] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[7] J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun. 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Sci. Rep., 2016, 6: 28885.

[8] J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, H. Yu, H. Zhang, J. Wang, D. Tang. Graphene mode-locked femtosecond laser at 2  μm wavelength. Opt. Lett., 2012, 37: 2085-2087.

[9] J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, K. M. Abramski. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett., 2015, 40: 3885-3888.

[10] Y.-H. Lin, S.-F. Lin, Y.-C. Chi, C.-L. Wu, C.-H. Cheng, W.-H. Tseng, J.-H. He, C.-I. Wu, C.-K. Lee, G.-R. Lin. Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photon., 2015, 2: 481-490.

[11] J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater., 2016, 26: 7454-7461.

[12] M. Zhang, E. J. R. Kelleher, A. S. Pozharov, E. D. Obraztsova, S. V. Popov, J. R. Taylor. Passive synchronization of all-fiber lasers through a common saturable absorber. Opt. Lett., 2011, 36: 3984-3986.

[13] G. H. Hu, T. Albrow-Owen, X. X. Jin, A. Ali, Y. W. Hu, R. C. T. Howe, K. Shehzad, Z. Y. Yang, X. K. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. P. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, T. Hasan. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun., 2017, 8: 278.

[14] H. Chen, Y. Chen, J. Yin, X. Zhang, T. Guo, P. Yan. High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser. Opt. Express, 2016, 24: 16287-16296.

[15] K. Wu, X. Zhang, J. Wang, J. Chen. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Opt. Lett., 2015, 40: 1374-1377.

[16] H. Zhang, S. Lu, J. Zheng, J. Du, S. Wen, D. Tang, K. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 2014, 22: 7249-7260.

[17] D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, J. Zhao. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small, 2016, 12: 1489-1497.

[18] H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, Y. H. Cha, D. Y. Jeong, S. B. Lee, K. Lee, D. I. Yeom. All-fiber Tm-doped soliton laser oscillator with 6  nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber. Opt. Express, 2016, 24: 14152-14158.

[19] J. Boguslawski, G. Sobon, R. Zybala, J. Sotor. Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator. Opt. Lett., 2015, 40: 2786-2789.

[20] P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L. Li, Z. Sun. Large-area tungsten disulfide for ultrafast photonics. Nanoscale, 2017, 9: 1871-1877.

[21] J. Wang, S. Lin, X. Liang, M. Wang, P. Yan, G. Hu, T. Albrow-Owen, S. Ruan, Z. Sun, T. Hasan. High-energy and efficient Raman soliton generation tunable from 1.98 to 2.29 μm in an all-silica-fiber thulium laser system. Opt. Lett., 2017, 42: 3518-3521.

[22] C. Ruppert, O. B. Aslan, T. F. Heinz. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14: 6231-6236.

[23] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express, 2013, 21: 4908-4916.

[24] L. Zhou, K. Xu, A. Zubair, X. Zhang, F. P. Ouyang, T. Palacios, M. S. Dresselhaus, Y. F. Li, J. Kong. Role of molecular sieves in the CVD synthesis of large-area 2D MoTe2. Adv. Funct. Mater., 2017, 27: 1603491.

[25] J. H. Huang, K. Y. Deng, P. S. Liu, C. T. Wu, C. T. Chou, W. H. Chang, Y. J. Lee, T. H. Hou. Large-area 2D layered MoTe2 by physical vapor deposition and solid-phase crystallization in a tellurium-free atmosphere. Adv. Mater. Interfaces, 2017, 4: 1700157.

[26] O. Knop, R. D. MacDonald. Chalkogenides of the transition elements: III. Molybdenum ditelluride. Can. J. Chem., 1961, 39: 897-904.

[27] L. H. Qiu, Y. Wei, V. G. Pol, A. Gedanken. Synthesis of alpha-MoTe2 nanorods via annealing Te-seeded amorphous MoTe2 particles. Inorg. Chem., 2004, 43: 6061-6066.

[28] A. Roy, H. C. P. Movva, B. Satpati, K. Kim, R. Dey, A. Rai, T. Pramanik, S. Guchhait, E. Tutuc, S. K. Banerjee. Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS Appl. Mater. Interfaces, 2016, 8: 7396-7402.

[29] C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, D. I. Yeom. Toward higher-order passive harmonic mode-locking of a soliton fiber laser. Opt. Lett., 2012, 37: 1862-1864.

[30] J. Yin, J. Li, H. Chen, J. Wang, P. Yan, M. Liu, W. Liu, W. Lu, Z. Xu, W. Zhang, J. Wang, Z. Sun, S. Ruan. Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers. Opt. Express, 2017, 25: 30020-30031.

[31] M. Trushin, E. J. R. Kelleher, T. Hasan. Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes. Phys. Rev. B, 2016, 94: 155301.

Jintao Wang, Zike Jiang, Hao Chen, Jiarong Li, Jinde Yin, Jinzhang Wang, Tingchao He, Peiguang Yan, Shuangchen Ruan. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber[J]. Photonics Research, 2018, 6(6): 06000535.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!