激光与光电子学进展, 2019, 56 (19): 192302, 网络出版: 2019-10-14   

余弦-高斯光束在太赫兹平行平板波导中的传输研究 下载: 1065次

Cos-Gaussian Beams Propagating Inside Terahertz Parallel-Plate Waveguides
作者单位
1 上海大学物理系,上海 200444
2 郑州师范学院物理与电子工程学院, 河南 郑州 450044
引用该论文

吴登明, 滕达, 曹清, 白丽华, 李哲. 余弦-高斯光束在太赫兹平行平板波导中的传输研究[J]. 激光与光电子学进展, 2019, 56(19): 192302.

Dengming Wu, Da Teng, Qing Cao, Lihua Bai, Zhe Li. Cos-Gaussian Beams Propagating Inside Terahertz Parallel-Plate Waveguides[J]. Laser & Optoelectronics Progress, 2019, 56(19): 192302.

参考文献

[1] Mittleman D M. Perspective:terahertz science and technology[J]. Journal of Applied Physics, 2017, 122(23): 230901.

[2] Zhang L, Zhang M, Liang H W. Realization of full control of a terahertz wave using flexible metasurfaces[J]. Advanced Optical Materials, 2017, 5(24): 1700486.

[3] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716-1718.

[4] MittlemanD.[\s]{1}Sensing[\s]{1}with[\s]{1}terahertz[\s]{1}radiation[M].[\s]{1}Berlin,[\s]{1}Heidelberg:[\s]{1}Springer,[\s]{1}2003.[\s]{1}

[5] Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12): 977-981.

[6] Karl N J. McKinney R W, Monnai Y, et al. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna[J]. Nature Photonics, 2015, 9(11): 717-720.

[7] Rusina A, Durach M, Nelson K A, et al. Nanoconcentration of terahertz radiation in plasmonic waveguides[J]. Optics Express, 2008, 16(23): 18576-18589.

[8] Liang H W, Ruan S C, Zhang M, et al. Nanofocusing of terahertz wave on conical metal wire waveguides[J]. Optics Communications, 2010, 283(2): 262-264.

[9] Gao H, Cao Q, Zhu M N, et al. Nanofocusing of terahertz wave in a tapered hyperbolic metal waveguide[J]. Optics Express, 2014, 22(26): 32071-32081.

[10] Seo M A, Park H R, Koo S M, et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit[J]. Nature Photonics, 2009, 3(3): 152-156.

[11] Zhan H, Mendis R, Mittleman D M. Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides[J]. Optics Express, 2010, 18(9): 9643-9650.

[12] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015): 376-379.

[13] Awad M M, Cheville R A. Transmission terahertz waveguide-based imaging below the diffraction limit[J]. Applied Physics Letters, 2005, 86(22): 221107.

[14] Wächter M, Nagel M, Kurz H. Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission[J]. Applied Physics Letters, 2007, 90(6): 061111.

[15] Chen D R, Chen H B. A novel low-loss terahertz waveguide: polymer tube[J]. Optics Express, 2010, 18(4): 3762-3767.

[16] Liang H W, Ruan S C, Zhang M. Terahertz surface wave propagation and focusing on conical metal wires[J]. Optics Express, 2008, 16(22): 18241-18248.

[17] Gallot G, Jamison S P. McGowan R W, et al. Terahertz waveguides[J]. Journal of the Optical Society of America B, 2000, 17(5): 851-863.

[18] Wang K, Cao Q, Zhang H F, et al. Cos-Gaussian modal field of a terahertz rectangular metal waveguide filled with multiple slices of dielectric[J]. Optics Communications, 2018, 417: 57-61.

[19] Mendis R, Mittleman D M. An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation[J]. Journal of the Optical Society of America B, 2009, 26(9): A6-A13.

[20] Kim S H, Lee E S, Ji Y B, et al. Improvement of THz coupling using a tapered parallel-plate waveguide[J]. Optics Express, 2010, 18(2): 1289-1295.

[21] Markov A, Guerboukha H, Skorobogatiy M. Hybrid metal wire-dielectric terahertz waveguides: challenges and opportunities [Invited][J]. Journal of the Optical Society of America B, 2014, 31(11): 2587-2600.

[22] Cao Q, Jahns J. Azimuthally polarized surface plasmons as effective terahertz waveguides[J]. Optics Express, 2005, 13(2): 511-518.

[23] He X Y, Wang Q J, Yu S F. Numerical study of gain-assisted terahertz hybrid plasmonic waveguide[J]. Plasmonics, 2012, 7(3): 571-577.

[24] Li H S, Atakaramians S, Lwin R, et al. Flexible single-mode hollow-core terahertz fiber with metamaterial cladding[J]. Optica, 2016, 3(9): 941-947.

[25] Atakaramians S, Afshar V S, Monro T M, et al. Terahertz dielectric waveguides[J]. Advances in Optics and Photonics, 2013, 5(2): 169-215.

[26] 陈颖, 曹景刚, 许扬眉, 等. 双金属挡板金属-电介质-金属波导耦合方形腔的Fano共振传感特性[J]. 中国激光, 2019, 46(2): 0213001.

    Chen Y, Cao J G, Xu Y M, et al. Fano resonance sensing characteristics of metal-dielectric-metal waveguide coupling square cavity with bimetallic baffle[J]. Chinese Journal of Lasers, 2019, 46(2): 0213001.

[27] Mendis R, Grischkowsky D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Optics Letters, 2001, 26(11): 846-848.

[28] Harsha S S, Laman N, Grischkowsky D. High-Q terahertz Bragg resonances within a metal parallel plate waveguide[J]. Applied Physics Letters, 2009, 94(9): 091118.

[29] Laman N, Harsha S S, Grischkowsky D, et al. High-resolution waveguide THz spectroscopy of biological molecules[J]. Biophysical Journal, 2008, 94(3): 1010-1020.

[30] Eyyubo lu H T, Baykal Y. Analysis of reciprocity of cos-Gaussian and cosh-Gaussian laser beams in a turbulent atmosphere[J]. Optics Express, 2004, 12(20): 4659-4674.

[31] Zhou G Q, Chu X X. Propagation of a partially coherent cosine-Gaussian beam through an ABCD optical system in turbulent atmosphere[J]. Optics Express, 2009, 17(13): 10529-10534.

[32] 黄永超, 蔡达锋, 张廷蓉. 双曲余弦高斯光束在梯度折射率介质中的束腰宽度及其位置[J]. 激光与光电子学进展, 2015, 52(2): 022601.

    Huang Y C, Cai D F, Zhang T R. Beam waist width and waist location of cosh-Gaussian beams in a gradient-index medium[J]. Laser & Optoelectronics Progress, 2015, 52(2): 022601.

[33] 杨玉婷, 张廷蓉, 龚霞. 余弦高斯光束通过含球差分数傅里叶变换系统的传输[J]. 光学学报, 2017, 37(2): 0207001.

    Yang Y T, Zhang T R, Gong X. Propagation of cosine-Gaussian beams in spherically aberrated fractional Fourier transform system[J]. Acta Optica Sinica, 2017, 37(2): 0207001.

[34] Zhu S J, Chen Y H, Wang J, et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization[J]. Optics Express, 2015, 23(26): 33099-33115.

[35] Chen R P, Ni Y Z, Chu X X. Propagation of a cos-Gaussian beam in a Kerr medium[J]. Optics & Laser Technology, 2011, 43(3): 483-487.

[36] Keshavarz A. Propagation of cos-Gaussian beam in photorefractive crystal[J]. World Academy of Science, Engineering and Technology, 2015, 9(12): 742-745.

[37] Pozar[\s]{1}DM.[\s]{1}Microwave[\s]{1}engineering[M].[\s]{1}Hoboken:[\s]{1}John[\s]{1}Wiley[\s]{1}&[\s]{1}Sons,[\s]{1}2009.[\s]{1}

[38] Kogelnik H, Li T. Laser beams and resonators[J]. Applied Optics, 1966, 5(10): 1550-1567.

[39] Cao Q, Deng X M. Corrections to the paraxial approximation of an arbitrary free-propagation beam[J]. Journal of the Optical Society of America A, 1998, 15(5): 1144-1148.

[40] Ordal M A, Bell R J, Alexander R W, et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 1985, 24(24): 4493-4499.

吴登明, 滕达, 曹清, 白丽华, 李哲. 余弦-高斯光束在太赫兹平行平板波导中的传输研究[J]. 激光与光电子学进展, 2019, 56(19): 192302. Dengming Wu, Da Teng, Qing Cao, Lihua Bai, Zhe Li. Cos-Gaussian Beams Propagating Inside Terahertz Parallel-Plate Waveguides[J]. Laser & Optoelectronics Progress, 2019, 56(19): 192302.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!