Journal of Innovative Optical Health Sciences, 2016, 9 (3): 1630009, Published Online: Dec. 27, 2018  

Extending the spatiotemporal resolution of super-resolution microscopies using photomodulatable fluorescent proteins

Author Affiliations
1 Key Laboratory of RNA Biology, Institute of Biophysics Chinese Academy of Sciences Beijing, 100101, P.R. China
2 Beijing Key Laboratory of Noncoding RNA Institute of Biophysics Chinese Academy of Sciences, Beijing, 100101, P.R. China
3 Graduate School of the Chinese Academy of Sciences Beijing, P.R. China
Copy Citation Text

Mingshu Zhang, Zhifei Fu, Pingyong Xu. Extending the spatiotemporal resolution of super-resolution microscopies using photomodulatable fluorescent proteins[J]. Journal of Innovative Optical Health Sciences, 2016, 9(3): 1630009.

References

[1] M. J. Rust, M. Bates, X. Zhuang, "Sub-diffractionlimit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods 3(10), 793– 795 (2006).

[2] S. T. Hess, T. P. Girirajan, M. D. Mason "Ultrahigh resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91(11), 4258–4272 (2006).

[3] E. Betzig et al., "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313 (5793), 1642–1645 (2006).

[4] M. C. Hofmann, S. Eggeling, S. Jakobs, W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sc.i USA 102(49), 17565–17569 (2005).

[5] M. G. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. USA 102(37), 13081–13086 (2005).

[6] M. G. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198(2), 82–87 (2000).

[7] S. W. Hell, J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: Stimulatedemission- depletion fluorescence microscopy," Opt. Lett. 19(11), 780–782 (1994).

[8] D. M. Shcherbakova, P. Sengupta, J. Lippincott- Schwartz, W. Verkhusha, "Photocontrollable fluorescent proteins for superresolution imaging," Ann. Rev. Biophys. 43, 303–329 (2014).

[9] J. Lippincott-Schwartz, F. V. Subasch et al., "Photoactivatable mCherry for high-resolution twocolor fluorescence microscopy," Nat. Methods 6(2), 153–159 (2009).

[10] M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, CUP Archive, Cambridge (2000).

[11] B. Huang, H. Babcock, X. Zhuang, "Breaking the diffraction barrier: Super-resolution imaging of cells," Cell 143(7), 1047–1058 (2010).

[12] S. W. Hell, "Far-field optical nanoscopy," Science 316(5828), 1153–1158 (2007).

[13] G. Patterson, M. Davidson, S. Manley, J. Lippincott- Schwartz, "Superresolution imaging using single- molecule localization," Ann. Rev. Phys. Chem. 61, 345–367 (2010).

[14] S. J. Holden, S. Uphoff, A. N. Kapanidis, "DAOSTORM: An algorithm for high- density super-resolution microscopy," Nat. Methods 8(4), 279–280 (2011).

[15] F. Huang, S. L. Schwartz, J. M. Byars, K. A. Lidke, "Simultaneous multiple-emitter fitting for single molecule super-resolution imaging," Biomed. Opt. Express 2(5), 1377–1393 (2011).

[16] T. Quan et al., "High-density localization of active molecules using structured sparse model and Bayesian information criterion," Opt. Express 19(18), 16963–16974 (2011).

[17] S. Cox et al. "Bayesian localization microscopy reveals nanoscale podosome dynamics," Nat. Methods 9(2), 195–200 (2012).

[18] T. Dertinger, R. Colyer, G. Iyer, S. Weiss, J. Enderlein, "Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)," Proc. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).

[19] S. W. Hell, M. Kroug, "Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit," Appl. Phys. B 60(5), 495–497 (1995).

[20] E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, "Near field scanning optical microscopy (NSOM): Development and biophysical applications," Biophys. J. 49(1), 269 (1986).

[21] E. H. Rego et al., "Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50 nm resolution," Proc. Natl. Acad. Sci. USA 109(3), E135–143 (2012).

[22] D. Li et al., "ADVANCED IMAGING. Extendedresolution structured illumination imaging of endocytic and cytoskeletal dynamics," Science 349 (6251), aab3500 (2015).

[23] M. Zhang et al., "Rational design of true monomeric and bright photoactivatable fluorescent proteins," Nat. Methods 9(7), 727–729 (2012).

[24] S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, X. Zhuang, "Characterization and development of photoactivatable fluorescent proteins for singlemolecule- based superresolution imaging," Proc. Natl. Acad. Sci. USA 111(23), 8452–8457 (2014).

[25] X. Zhang et al., "Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI)," ACS Nano 9(3), 2659–2667 (2015).

[26] F. V. Subach, G. H. Patterson, M. Renz, J. Lippincott- Schwartz, V. V. Verkhusha, "Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells," J. Am. Chem. Soc. 132(18), 6481–6491 (2010).

[27] G. H. Patterson, J. Lippincott-Schwartz, "A photoactivatable GFP for selective photolabeling of proteins and cells," Science 297(5588), 1873–1877 (2002).

[28] R. Ando, H. Mizuno, A. Miyawaki, "Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting," Science 306(5700), 1370– 1373 (2004).

[29] A. L. McEvoy et al., "mMaple: A photoconvertible fluorescent protein for use in multiple imaging modalities," Plos One 7(12), e51314 (2012).

[30] J. Wiedenmann et al., "EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion," Proc. Natl. Acad. Sci. USA 101(45), 15905–15910 (2004).

[31] S. A. McKinney, C. S. Murphy, K. L. Hazelwood, M. W. Davidson, L. L. Looger, "A bright and photostable photoconvertible fluorescent protein," Nat. Methods 6(2), 131–133 (2009).

[32] D. M. Chudakov, S. Lukyanov, K. A. Lukyanov, "Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2," Nat. Protoc. 2(8), 2024–2032 (2007).

[33] S. Habuchi, H. Tsutsui, A. B. Kochaniak, A. Miyawaki, A. M. van Oijen, "mKikGR, a Monomeric Photoswitchable Fluorescent Protein," Plos One 3(12), e3944 (2008).

[34] H. Chang et al., "A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications," Proc. Natl. Acad. Sci. USA 109(12), 4455–4460 (2012).

[35] D. M. Chudakov et al., "Photoswitchable cyan fluorescent protein for protein tracking," Nat. Biotechnol. 22(11), 1435–1439 (2004).

[36] K. Solovyov et al., "Expression in E. coli and puri- fication of the fibrillogenic fusion proteins TTRsfGFP and 2M-sfGFP," Prep. Biochem. Biotechnol. 41(4), 337–349 (2011).

[37] K. I. Mortensen, L. S. Churchman, J. A. Spudich, H. Flyvbjerg, "Optimized localization analysis for single-molecule tracking and super-resolution microscopy," Nat. Methods 7(5), 377–381 (2010).

[38] H. Hoi et al., "A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization," J. Mol. Biol. 401(5), 776–791 (2010).

[39] R. E. Thompson, D. R. Larson, W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82(5), 2775– 2783 (2002).

[40] A. C. Stiel et al., 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants, Biochem. J. 402(1), 35–42 (2007).

[41] T. Grotjohann et al., "Diffraction-unlimited alloptical imaging and writing with a photochromic GFP," Nature 478(7368), 204–208 (2011).

[42] T.Grotjohann et al., rsEGFP2 enables fastRESOLFT nanoscopy of living cells, eLife 1, e00248 (2012).

[43] G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, X. Zhuang, "Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging," Nat. Methods 8(12), 1027–1036 (2011).

[44] F. Huang et al., "Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms," Nat. Methods 10(7), 653–658 (2013).

[45] A. B. Rosenbloom et al., "Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant," Proc. Natl. Acad. Sci. 111(36), 13093– 13098 (2014).

[46] H. Shroff et al., "Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes," Proc. Natl. Acad. Sci. USA 104(51), 20308–20313 (2007).

Mingshu Zhang, Zhifei Fu, Pingyong Xu. Extending the spatiotemporal resolution of super-resolution microscopies using photomodulatable fluorescent proteins[J]. Journal of Innovative Optical Health Sciences, 2016, 9(3): 1630009.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!