Photonics Research, 2020, 8 (12): 12000B47, Published Online: Nov. 10, 2020  

Weak-value amplification for the optical signature of topological phase transitions Download: 623次

Author Affiliations
1 Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
2 Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
3 Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA
4 e-mail: hailuluo@hnu.edu.cn
5 e-mail: xiaobo.yin@colorado.edu
Copy Citation Text

Weijie Wu, Shizhen Chen, Wenhao Xu, Zhenxing Liu, Runnan Lou, Lihua Shen, Hailu Luo, Shuangchun Wen, Xiaobo Yin. Weak-value amplification for the optical signature of topological phase transitions[J]. Photonics Research, 2020, 8(12): 12000B47.

References

[1] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 2010, 82: 3045-3067.

[2] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 2012, 336: 205-209.

[3] W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, S. Zhang. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett., 2015, 114: 037402.

[4] B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, S. Zhang. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 2018, 359: 1013-1016.

[5] W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, F. Ye. Coupling of edge states and topological Bragg solitons. Phys. Rev. Lett., 2019, 123: 254103.

[6] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 2019, 91: 015006.

[7] L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, K. H. Wu. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett., 2012, 109: 056804.

[8] M. Ezawa. Spin-valley optical selection rule and strong circular dichroism in silicene. Phys. Rev. B, 2012, 86: 161407.

[9] C. L. Kane, E. J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 2005, 95: 226801.

[10] C. L. Kane, E. J. Mele. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 2005, 95: 146802.

[11] N. D. Drummond, V. Zólyomi, V. I. Fal’ko. Electrically tunable band gap in silicene. Phys. Rev. B, 2012, 85: 075423.

[12] M. Ezawa. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett., 2012, 109: 055502.

[13] S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, M. Solja. Experimental observation of large Chern numbers in photonic crystals. Phys. Rev. Lett., 2015, 115: 253901.

[14] Y. Aharonov, D. Z. Albert, L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 1988, 60: 1351-1354.

[15] X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, S. Wen. Recent advances in the spin Hall effect of light. Rep. Prog. Phys., 2017, 80: 066401.

[16] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 2008, 319: 787-790.

[17] G. Jayaswal, G. Mistura, M. Merano. Observation of the Imbert-Fedorov effect via weak value amplification. Opt. Lett., 2014, 39: 2266-2269.

[18] G. Jayaswal, G. Mistura, M. Merano. Observing angular deviations in ligh-beam reflection via weak measurements. Opt. Lett., 2014, 39: 6257-6260.

[19] W. J. M. Kort-Kamp, F. J. Culchac, R. B. Capaz, F. A. Pinheiro. Photonic spin Hall effect in bilayer graphene moiré superlattices. Phys. Rev. B, 2018, 98: 195431.

[20] S. Chen, X. Ling, W. Shu, H. Luo, S. Wen. Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect. Phys. Rev. Appl., 2020, 13: 014057.

[21] M. C. Chang, M. F. Yang. Optical signature of topological insulators. Phys. Rev. B, 2009, 80: 113304.

[22] O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty. Optical nanoprobing via spin-orbit interaction of light. Phys. Rev. Lett., 2010, 104: 253601.

[23] S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, S. Wen. Weak-value amplification for Weyl-point separation in momentum space. New J. Phys., 2018, 20: 103050.

[24] W. J. M. Kort-Kamp. Topological phase transitions in the photonic spin Hall effect. Phys. Rev. Lett., 2017, 119: 147401.

[25] N. Brunner, C. Simon. Measuring small longitudinal phase shifts: weak measurements or standard interferometry?. Phys. Rev. Lett., 2010, 105: 010405.

[26] X. Yin, Z. Ye, J. Rho, Y. Wang, X. Zhang. Photonic spin Hall effect at metasurfaces. Science, 2013, 339: 1405-1407.

[27] W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, S. Wen. Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals. Photon. Res., 2018, 6: 511-516.

[28] K. Y. Bliokh, Y. P. Bliokh. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett., 2006, 96: 073903.

[29] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 2015, 348: 1448-1451.

[30] H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, D. Fan. Spin Hall effect of a light beam in left-handed materials. Phys. Rev. A, 2009, 80: 043810.

[31] L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, S. Wen. Quantized photonic spin Hall effect in graphene. Phys. Rev. A, 2017, 95: 013809.

[32] W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, C. Farina. Active magneto-optical control of spontaneous emission in graphene. Phys. Rev. B, 2015, 92: 205415.

[33] W. J. M. Kort-Kamp, N. A. Sinitsyn, D. A. R. Dalvit. Quantized beam shifts in graphene. Phys. Rev. B, 2016, 93: 081410.

[34] W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, X. Yin. Transitional Goos-Hänchen effect due to the topological phase transitions. Opt. Express, 2018, 26: 23705-23713.

[35] D. N. Sheng, Z. Y. Weng, L. Sheng, F. D. M. Haldane. Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett., 2006, 97: 036808.

[36] E. Prodan. Robustness of the spin-Chern number. Phys. Rev. B, 2009, 80: 125327.

[37] M. Ezawa. Photoinduced topological phase transition and a single dirac-cone state in silicene. Phys. Rev. Lett., 2013, 110: 026603.

[38] Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, X. C. Xie. Topological Imbert-Fedorov shift in Weyl semimetals. Phys. Rev. Lett., 2015, 115: 156602.

[39] S. A. Yang, H. Pan, F. Zhang. Chirality-dependent Hall effect in Weyl semimetals. Phys. Rev. Lett., 2015, 115: 156603.

[40] R. Kubo. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 1957, 12: 570-586.

[41] L. Stille, C. J. Tabert, E. J. Nicol. Optical signatures of the tunable band gap and valley-spin coupling in silicene. Phys. Rev. B, 2012, 86: 195405.

[42] P. Rodriguez-Lopez, W. J. M. Kort-Kamp, D. Dalvit, L. M. Woods. Casimir force phase transitions in the graphene family. Nat. Commun., 2017, 8: 14699.

[43] M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, S. Wen. Strong spin-orbit interaction of light on the surface of atomically thin crystals. Phys. Rev. A, 2017, 95: 063827.

[44] W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, S. Wen. Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime. Phys. Rev. A, 2017, 96: 043814.

[45] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London Ser. A, 1984, 392: 45-57.

[46] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, A. V. Zayats. Spin-orbit interactions of light. Nat. Photonics, 2015, 9: 796-808.

[47] L. Shiand, J. C. W. Song. Shift vector as the geometric origin of beam shifts. Phys. Rev. B, 2019, 100: 201405.

[48] I. M. Duck, P. M. Stevenson, E. C. G. Sudarshan. The sense in which a ‘weak measurement’ of a spin -1/2 particle’s spin component yields a value 100. Phys. Rev. D, 1989, 40: 2112-2117.

[49] N. W. M. Ritchie, J. G. Story, R. G. Hulet. Realization of a measurement of a ‘weak value’. Phys. Rev. Lett., 1991, 66: 1107-1110.

[50] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, R. W. Boyd. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys., 2014, 86: 307-316.

[51] A. N. Jordan, J. Martnez-Rincón, J. C. Howell. Technical advantages for weak-value amplification: when less is more. Phys. Rev. X, 2014, 4: 011031.

[52] H. Luo, X. Zhou, W. Shu, S. Wen, D. Fan. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Phys. Rev. A, 2011, 84: 043806.

[53] X. Zhou, X. Li, H. Luo, S. Wen. Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect. Appl. Phys. Lett., 2014, 104: 051130.

[54] C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, G.-C. Guo. Ultrasensitive phase estimation with white light. Phys. Rev. A, 2011, 83: 044102.

[55] X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, G.-C. Guo. Phase estimation with weak measurement using a white light source. Phys. Rev. Lett., 2013, 111: 033604.

[56] S. Chen, X. Zhou, C. Mi, H. Luo, S. Wen. Modified weak measurements for the detection of the photonic spin Hall effect. Phys. Rev. A, 2015, 91: 062105.

[57] P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, M. Eich. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun., 2016, 7: 11809.

[58] C. Shang, X. Chen, W. Luo, F. Ye. Quantum anomalous Hall-quantum spin Hall effect in optical superlattices. Opt. Lett., 2018, 43: 275-278.

[59] H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, C. T. Chan. Highly degenerate photonic flat bands arising from complete graph configurations. Phys. Rev. A, 2019, 100: 043841.

Weijie Wu, Shizhen Chen, Wenhao Xu, Zhenxing Liu, Runnan Lou, Lihua Shen, Hailu Luo, Shuangchun Wen, Xiaobo Yin. Weak-value amplification for the optical signature of topological phase transitions[J]. Photonics Research, 2020, 8(12): 12000B47.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!