中国激光, 2020, 47 (7): 0701004, 网络出版: 2020-07-10   

胶质量子点激光器及片上集成 下载: 1452次特邀综述

Colloidal Quantum Dot Lasers and On-Chip Integration
刘慧 1龚旗煌 1,2,3陈建军 1,2,3,*
作者单位
1 北京大学物理学院人工微结构和介观物理国家重点实验室, 北京 100871
2 北京大学纳光电子前沿科学中心&量子物质科学协同创新中心, 北京 100871
3 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

刘慧, 龚旗煌, 陈建军. 胶质量子点激光器及片上集成[J]. 中国激光, 2020, 47(7): 0701004.

Liu Hui, Gong Qihuang, Chen Jianjun. Colloidal Quantum Dot Lasers and On-Chip Integration[J]. Chinese Journal of Lasers, 2020, 47(7): 0701004.

参考文献

[1] Zhang C, Zou C L, Zhao Y, et al. Organic printed photonics: from microring lasers to integrated circuits[J]. Science Advances, 2015, 1(8): e1500257.

[2] Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers[J]. Nature, 2003, 421(6920): 241-245.

[3] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 2011, 5(7): 406-410.

[4] Fan F, Turkdogan S, Liu Z C, et al. A monolithic white laser[J]. Nature Nanotechnology, 2015, 10(9): 796-803.

[5] Zhao J Y, Yan Y L, Gao Z H, et al. Full-color laser displays based on organic printed microlaser arrays[J]. Nature Communications, 2019, 10(1): 870.

[6] Miller D A B. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 2009, 97(7): 1166-1185.

[7] Smit M, van der Tol J, Hill M. Moore's law in photonics[J]. Laser & Photonics Reviews, 2012, 6(1): 1-13.

[8] Kagan C R, Murray C B. Charge transport in strongly coupled quantum dot solids[J]. Nature Nanotechnology, 2015, 10(12): 1013-1026.

[9] Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1): 13-23.

[10] Kagan CR, LifshitzE, Sargent EH, et al., 2016, 353(6302): aac5523.

[11] 刘展, 林逢源, 高美, 等. CdSe量子点敏化对GaAs发光特性的影响[J]. 中国激光, 2019, 46(8): 0811002.

    Liu Z, Lin F Y, Gao M, et al. Effect of CdSe quantum dot sensitization on GaAs luminescence characteristics[J]. Chinese Journal of Lasers, 2019, 46(8): 0811002.

[12] Kim J Y, Voznyy O, Zhitomirsky D, et al. 25th anniversary article. Colloidal quantum dot materials and devices: a quarter-century of advances[J]. Advanced Materials, 2013, 25(36): 4986-5010.

[13] Yang J, Choi M K, Kim D H, et al. Designed assembly and integration of colloidal nanocrystals for device applications[J]. Advanced Materials, 2016, 28(6): 1176-1207.

[14] Rong K X, Liu H, Shi K B, et al. Pattern-assisted stacking colloidal quantum dots for photonic integrated circuits[J]. Nanoscale, 2019, 11(29): 13885-13893.

[15] Rong K X, Sun C W, Shi K B, et al. Room-temperature planar lasers based on water-dripping microplates of colloidal quantum dots[J]. ACS Photonics, 2017, 4(7): 1776-1784.

[16] Adachi M M, Fan F J, Sellan D P, et al. Microsecond-sustained lasing from colloidal quantum dot solids[J]. Nature Communications, 2015, 6: 8694.

[17] Lin C H, Zeng Q J, Lafalce E, et al. Large-scale robust quantum dot microdisk lasers with controlled high quality cavity modes[J]. Advanced Optical Materials, 2017, 5(9): 1700011.

[18] Xie W Q, Stöferle T, Rainò G, et al. On-chip integrated quantum-dot-silicon-nitride microdisk lasers[J]. Advanced Materials, 2017, 29(16): 1604866.

[19] Gao Y. Tobing L Y M, Kiffer A, et al. Azimuthally polarized, circular colloidal quantum dot laser beam enabled by a concentric grating[J]. ACS Photonics, 2016, 3(12): 2255-2261.

[20] Stasio F D, Polovitsyn A, Angeloni I, et al. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS “giant-shell” nanocrystals[J]. ACS Photonics, 2016, 3(11): 2083-2088.

[21] Yao Y C, Yang Z P, Hwang J M, et al. Coherent and polarized random laser emissions from colloidal CdSe/ZnS quantum dots plasmonically coupled to ellipsoidal Ag nanoparticles[J]. Advanced Optical Materials, 2017, 5(3): 1-11.

[22] Wang Y, Ta V D, Leck K S, et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots[J]. Nano Letters, 2017, 17(4): 2640-2646.

[23] 林雨, 钟莹, 刘海涛. 不同基片对单量子点单光子荧光发射的调控[J]. 中国激光, 2018, 45(6): 0606005.

    Lin Y, Zhong Y, Liu H T. Modification of single photon fluorescence emission of single quantum dots with different substrates[J]. Chinese Journal of Lasers, 2018, 45(6): 0606005.

[24] Kress S J P, Cui J, Rohner P, et al. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers[J]. Science Advances, 2017, 3(9): e1700688.

[25] Zhu Y P, Xie W Q, Bisschop S, et al. On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping[J]. ACS Photonics, 2017, 4(10): 2446-2452.

[26] Lafalce E, Zeng Q J, Lin C H, et al. Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point[J]. Nature Communications, 2019, 10(1): 1-8.

[27] Le Feber B. Prins F, de Leo E, et al. Colloidal-quantum-dot ring lasers with active color control[J]. Nano Letters, 2018, 18(2): 1028-1034.

[28] Dang C, Lee J, Breen C, et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films[J]. Nature Nanotechnology, 2012, 7(5): 335-339.

[29] Fan F J, Voznyy O, Sabatini R P, et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy[J]. Nature, 2017, 544(7648): 75-79.

[30] Lim J, Park Y, Klimov V I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping[J]. Nature Materials, 2018, 17(1): 42-49.

[31] Gollner C, Ziegler J, Protesescu L, et al. Random lasing with systematic threshold behavior in films of CdSe/CdS core/thick-shell colloidal quantum dots[J]. ACS Nano, 2015, 9(10): 9792-9801.

[32] Liao C, Xu R L, Xu Y Q, et al. Ultralow-threshold single-mode lasing from phase-pure CdSe/CdS core/shell quantum dots[J]. Journal of Physical Chemistry Letters, 2016, 7(24): 4968-4976.

[33] Wang Y, Fong K E, Yang S C, et al. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers[J]. Laser & Photonics Reviews, 2015, 9(5): 507-516.

[34] Schäfer J, Mondia J P, Sharma R, et al. Quantum dot microdrop laser[J]. Nano Letters, 2008, 8(6): 1709-1712.

[35] Nandwana V, Subramani C, Yeh Y, et al. Direct patterning of quantum dot nanostructures via electron beam lithography[J]. Journal of Materials Chemistry, 2011, 21(42): 16859-16862.

[36] Rong K X, Gan F Y, Shi K B, et al. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides[J]. Advanced Materials, 2018, 30(21): 1706546.

[37] Huang C, Zhang C, Xiao S M, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481): 1018-1021.

[38] Tang S J, Liu Z H, Qian Y J, et al. A tunable optofluidic microlaser in a photostable conjugated polymer[J]. Advanced Materials, 2018, 30(50): e1804556.

刘慧, 龚旗煌, 陈建军. 胶质量子点激光器及片上集成[J]. 中国激光, 2020, 47(7): 0701004. Liu Hui, Gong Qihuang, Chen Jianjun. Colloidal Quantum Dot Lasers and On-Chip Integration[J]. Chinese Journal of Lasers, 2020, 47(7): 0701004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!