Photonics Research, 2017, 5 (4): 04000340, Published Online: Oct. 10, 2018  

Design of low-energy on-chip electro-optical 1  ×  M wavelength-selective switches

Author Affiliations
Department of Engineering, The University of Massachusetts at Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA (Richard.Soref@umb.edu)
Copy Citation Text

Richard Soref. Design of low-energy on-chip electro-optical 1  ×  M wavelength-selective switches[J]. Photonics Research, 2017, 5(4): 04000340.

References

[1] A. Sahara, H. Kawahara, S. Yamamoto, S. Kawai, M. Fukutoku, T. Mizuno, Y. Miyamoto, K. Suzuki, K. Yamaguchi. Proposal and experimental demonstration of SDM node enabling path assignment to arbitrary wavelengths, cores, and directions. Opt. Express, 2017, 25: 4061-4075.

[2] AsakuraH.SugiyamaK.TsudaH., “Design of a 1  ×  2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform,” in Optoelectronics and Communications Conference (2016), paper WA2-105.

[3] AsakuraH.YoshidaT.TsudaH.SuzukiK.TanizawaK.ToyamaM.OhtsukaM.YokoyamaN.MatsumaroK.SekiM.KoshinoK.IkedaK.NamikiS.KawashimaH., “A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” in 2015 International Conference on Photonics in Switching (2015).

[4] IkumaY.MizunoT.TakahashiH.IkedaT.TsudaH., “Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings,” in European Conference and Exhibition on Optical Communication (2012), paper Tu.3.E.5.

[5] C. R. Doerr, L. L. Buhl, L. Chen, N. Dupuis. Monolithic flexible-grid 1  ×  2 wavelength-selective switch in silicon photonics. J. Lightwave Technol., 2012, 30: 473-478.

[6] MiuraK.ShojiY.MizumotoT., “Silicon waveguide wavelength-selective switch for on-chip WDM communications,” in IEEE Photonics Conference (IPC) (2012), pp. 630631.

[7] SongJ.LuoX.FangQ.JiaL.TuX.LiowT.YuM.LoG., “Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application,” in Optical Fiber Communication Conference, Optical Society of America Technical Digest (2012), paper OM2J.2.

[8] R. Soref, J. Hendrickson. Proposed ultralow-energy dual nanobeam devices for on-chip N  ×  N switching, logic and wavelength multiplexing. Opt. Express, 2015, 23: 32582-32596.

[9] H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, R. Soref. Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photon. Res., 2017, 5: 108-112.

[10] SorefR., “Resonant and slow-light 2  ×  2 switches enabled by nanobeam and grating-coupled waveguides,” in Session IP5 at Progress in Electromagnetics Research Symposium (PIERS) (Invited Paper) (2017).

[11] C. V. Poulton, X. Zeng, M. T. Wade, M. A. Popovic. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode. Opt. Lett., 2015, 40: 4206-4210.

[12] L. Lu, L. Zhou, Z. Li, X. Li, J. G. Chen. Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers. IEEE Photon. J., 2015, 7: 7800108.

[13] ZhouH.QiuC.WuJ.LiuB.JiangX.PengJ.XuZ.ZhangY.LiuR.SuY.SorefR., “2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Conference on Lasers and Electro-Optics, OSA Digest (2016), paper JTh2A.

[14] R. Soref, J. R. Hendrickson, J. Sweet. Simulation of germanium nanobeam electro-optical 2  ×  2 switches and 1  ×  1 modulators for the 2 to 5  μm infrared region. Opt. Express, 2016, 24: 9369-9382.

Richard Soref. Design of low-energy on-chip electro-optical 1  ×  M wavelength-selective switches[J]. Photonics Research, 2017, 5(4): 04000340.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!