Photonics Research, 2017, 5 (6): 06000B47, Published Online: Dec. 7, 2017  

Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited] Download: 565次

Author Affiliations
1 Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
2 Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
Copy Citation Text

Yuta Kawashima, Susumu Shinohara, Satoshi Sunada, Takahisa Harayama. Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited][J]. Photonics Research, 2017, 5(6): 06000B47.

References

[1] J. U. Nöckel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 1997, 385: 45-47.

[2] SchwefelH. G. L.TureciH. E.StoneA. D.ChangR. K., “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, VahalaK., ed. (World Scientific, 2004), pp. 415495.

[3] T. Harayama, S. Shinohara. Two-dimensional microcavity lasers. Laser Photon. Rev., 2011, 5: 247-271.

[4] H. Cao, J. Wiersig. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 2015, 87: 61-111.

[5] X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, Y.-F. Xiao. Whispering-gallery microcavities with unidirectional laser emission. Laser Photon. Rev., 2016, 10: 40-61.

[6] J. Wiersig, M. Hentschel. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett., 2008, 100: 033901.

[7] WiersigJ.UnterhinninghofenJ.SongQ. H.CaoH.HentschelM.ShinoharaS., “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities, KwonO.LeeB.AnK., eds. (Bentham Books, 2011), pp. 109152.

[8] N. L. Aung, L. Ge, O. Malik, H. E. Türeci, C. F. Gmachl. Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping. Appl. Phys. Lett., 2015, 107: 151106.

[9] H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, J. Zyss. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. J. Opt. Soc. Am. B, 2004, 21: 923-934.

[10] S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, C.-M. Kim. Scarred resonances and steady probability distribution in a chaotic microcavity. Phys. Rev. A, 2005, 72: 061801.

[11] S. Shinohara, T. Harayama, H. E. Türeci, A. D. Stone. Ray-wave correspondence in the nonlinear description of stadium-cavity lasers. Phys. Rev. A, 2006, 74: 033820.

[12] V. A. Podolskiy, E. E. Narimanov. Chaos-assisted tunneling in dielectric microcavities. Opt. Lett., 2005, 30: 474-476.

[13] S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, E. E. Narimanov. Chaos-assisted directional light emission from microcavity lasers. Phys. Rev. Lett., 2010, 104: 163902.

[14] J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, K. An. Pump-induced dynamical tunneling in a deformed microcavity laser. Phys. Rev. Lett., 2010, 104: 243601.

[15] T. Harayama, S. Sunada, K. S. Ikeda. Theory of two-dimensional microcavity lasers. Phys. Rev. A, 2005, 72: 013803.

[16] LoudonR., The Quantum Theory of Light (Oxford University, 2000).

[17] H. E. Türeci, A. D. Stone, B. Collier. Self-consistent multimode lasing theory for complex or random lasing media. Phys. Rev. A, 2006, 74: 043822.

[18] T. E. Tureci, H. G. L. Schwefel, A. D. Stone, E. E. Narimanov. Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities. Opt. Express, 2002, 10: 752-776.

[19] J. Wiersig. Boundary element method for resonances in dielectric microcavities. J. Opt. A, 2003, 5: 53-60.

[20] M. Hentschel, H. Schomerus, R. Schubert. Husimi functions at dielectric interfaces: Inside–outside duality for optical systems and beyond. Europhys. Lett., 2003, 62: 636-642.

[21] T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, T. Aida. Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors. Opt. Lett., 2002, 27: 1430-1432.

[22] G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, N. M. Johnson. Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett., 2003, 83: 1710-1712.

[23] T. Fukushima, T. Harayama. Stadium and quasi-stadium laser diodes. IEEE J. Sel. Top. Quantum Electron., 2004, 10: 1039-1051.

[24] M. Choi, T. Tanaka, T. Fukushima, T. Harayama. Control of directional emission in quasistadium microcavity laser diodes with two electrodes. Appl. Phys. Lett., 2006, 88: 211110.

[25] S. F. Liew, L. Ge, B. Redding, G. S. Solomon, H. Cao. Pump-controlled modal interactions in microdisk lasers. Phys. Rev. A, 2015, 91: 043828.

[26] L. I. Deych. Effects of spatial nonuniformity on laser dynamics. Phys. Rev. Lett., 2005, 95: 043902.

[27] T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, Y.-J. Park. Lasing modes in a spiral-shaped dielectric microcavity. Opt. Lett., 2006, 31: 1250-1252.

[28] L. Ge, Y. D. Chong, A. D. Stone. Steady-state ab initio laser theory: Generalization and analytic results. Phys. Rev. A, 2010, 82: 063824.

[29] L. Ge, O. Malik, H. E. Türeci. Enhancement of laser power-efficiency by control of spatial hole burning interactions. Nat. Photonics, 2014, 8: 871-875.

[30] L. Ge. Selective excitation of lasing modes by controlling modal interactions. Opt. Express, 2015, 23: 30049-30056.

[31] T. Harayama, T. Fukushima, S. Sunada, K. S. Ikeda. Asymmetric stationary lasing patterns in 2D symmetric microcavities. Phys. Rev. Lett., 2003, 91: 073903.

[32] S. Sunada, T. Harayama, K. S. Ikeda. Nonlinear whispering-gallery modes in a microellipse cavity. Opt. Lett., 2004, 29: 718-720.

[33] S. Sunada, T. Harayama, K. S. Ikeda. Multimode lasing in two-dimensional fully chaotic cavity lasers. Phys. Rev. E, 2005, 71: 046209.

[34] S. Shinohara, S. Sunada, T. Harayama, K. S. Ikeda. Mode expansion description of stadium-cavity laser dynamics. Phys. Rev. E, 2005, 71: 036203.

Yuta Kawashima, Susumu Shinohara, Satoshi Sunada, Takahisa Harayama. Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited][J]. Photonics Research, 2017, 5(6): 06000B47.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!