中国激光, 2018, 45 (1): 0108001, 网络出版: 2018-01-24   

级联晶体倍频器件温度适应性扩展研究 下载: 657次

Research on Extending Temperature Acceptance Bandwidth of Second Harmonic Generation in Cascaded Crystals
作者单位
1 军械工程学院电子与光学工程系, 河北 石家庄 050003
2 武器测试中心, 陕西 华阴 714200
引用该论文

刘恂, 沈学举, 殷建玲, 罗赓. 级联晶体倍频器件温度适应性扩展研究[J]. 中国激光, 2018, 45(1): 0108001.

Liu Xun, Shen Xueju, Yin Jianling, Luo Geng. Research on Extending Temperature Acceptance Bandwidth of Second Harmonic Generation in Cascaded Crystals[J]. Chinese Journal of Lasers, 2018, 45(1): 0108001.

参考文献

[1] Nikitin D G, Byalkovskiy O A, Vershinin O I, et al. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[J]. Optics Letters, 2016, 41(7): 1660-1663.

[2] 许夏飞, 鲁燕华, 张雷, 等. 外腔谐振倍频8.7 W连续单频绿光技术研究[J]. 中国激光, 2017, 43(11): 1101010.

    Xu X F, Lu Y H, Zhang L, et al. Technical study of 8.7 W continuous wave single frequency green laser based on extra-cavity frequency doubling[J]. Chinese Journal of Lasers, 2017, 43(11): 1101010.

[3] 温馨, 韩亚帅, 何军, 等. PPKTP晶体半整体谐振腔倍频的397.5nm紫外激光输出[J]. 光学学报, 2016, 36(4): 0414001.

    Wen X, Han Y S, He J, et al. Generation of 397.5 nm ultra-violet laser by frequency doubling in a PPKTP-crystal semi-monolithic resonant cavity[J]. Acta Optica Sinica, 2016, 36(4): 0414001.

[4] 张远涛, 屈求智, 钱军, 等. PPLN晶体1560 nm激光倍频过程的热效应分析[J]. 中国激光, 2015, 42(7): 0708002.

    Zhang Y T, Qu Q Z, Qian J, et al. Thermal effect analysis of 1560 nm laser frequency doubling in a PPLN crystal[J]. Chinese Journal of Lasers, 2015, 42(7): 0708002.

[5] 黄金哲, 毛蓓丽, 戴菡, 等. 折射率线性调制晶体中的稳态倍频研究[J]. 光学学报, 2010, 30(9): 2634-2638.

    Huang J Z, Mao B L, Dai H, et al. Research on static frequency doubling in refrative-index modulated crystal[J]. Acta Optica Sinica, 2010, 30(9): 2634-2638.

[6] Schulz W, Poprawe R. Manufacturing with novel high-power diode lasers[J]. IEEE Journal of Selected Topics in Quantum Electron, 2000, 6(4): 696-705.

[7] Emery Y, Fleischhauer A, Walther T. Angle-tuned type II external-cavity frequency doubling without temperature stabilization[J]. Applied Optics, 1999, 38(6): 972-975.

[8] 张新, 张恒利, 毛叶飞, 等. 高效短脉冲宽带倍频绿光实现方法[J]. 中国激光, 2016, 43(2): 202003.

    Zhang X, Zhang H L, Mao Y F, et al. Efficient methods of green output by second harmonic generation with short pulse broad-band laser[J]. Chinese Journal of Lasers, 2016, 43(2): 202003.

[9] 李晓明, 沈学举, 刘恂, 等. KTP倍频器件温度适应性扩展研究[J]. 物理学报, 2015, 64(9): 094205.

    Li X M, Shen X J, Liu X, et al. Study on temperature adaptability extension of KTP frequency-doubling device[J]. Acta Physica Sinica, 2015, 64(9): 094205.

[10] Sabaeian M, Mousave L, Nadgaran H. Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model[J]. Optics Express, 2010, 18(18): 18732-18743.

[11] Barker C. Eimerl D, Velsko S. Temperature-insensitive phase matching for second-harmonic generation in deuterated l-arginine phosphate[J]. Journal of the Optical Society of America B, 1991, 8(12): 2481-2492.

[12] Zheng J A, Zhao S Z, Wang Q P, et al. Influence of thermal effect on KTP type-II phase-matching second-harmonic generation[J]. Optics Communications, 2001, 199(1): 207-214.

[13] Hon D, Bruesselabach H. Beam shaping to suppress phase mismatch in high power second-harmonic generation[J]. IEEE Journal on Selected Topics in Quantum Electronics, 1980, 16(12): 1356-1364.

[14] Cui Z J, Liu D, Sun M Z, et al. Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems[J]. Journal of the Optical Society of America B, 2016, 33(4): 525-534.

[15] Cui Z J, Liu D, Yang A H, et al. Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch[J]. IEEE Photonics Journal, 2016, 8(5): 6100308.

[16] Liang Y C, Su R F, Lu L H, et al. Temperature non-uniformity occurring during the cooling process of a KDP crystal and its effects on second harmonic generation[J]. Applied Optics, 2014, 53(23): 5109-5116.

[17] Xu D G, Yao J Q, Zhang B G, et al. 110 W high stability green laser using type II phase matching KTiOPO4(KTP) crystal with boundary temperature control[J]. Optics Communications, 2005, 245(1): 341-347.

[18] Liu X, Shen X J, Yin J L, et al. Three-crystal method for thermally induced phase mismatch compensation in second-harmonic generation[J]. Journal of the Optical Society of America B, 2017, 34(2): 383-388.

[19] Zhang D X, Lu J, Feng B H, et al. Increased temperature bandwidth of second harmonic generator using two KTiOPO4 crystals cut at different angles[J]. Optics Communications, 2008, 281(10): 2918-2922.

[20] SmithA. Crystal nonlinear optics[M]. New Mexico: AS-Photonic, 2015, 58- 59.

[21] 姚建铨, 徐德刚. 全固态激光及非线性光学频率变换技术[M]. 北京: 科学出版社, 2007: 652- 664.

    Yao JQ, Xu DG. All solid laser and nonlinear optical frequency conversion technology[M]. Beijing: Science Press, 2007: 652- 664.

[22] Kato K, Takaoka E. Sellmeier and thermo-optic dispersion formulas for KTP[J]. Applied Optics, 2002, 41(24): 5040-5044.

[23] Yarborough J, Falk J, Hitz C. Enhancement of optical second harmonic generation by utilizing the dispersion of air[J]. Applied Physics Letters, 1971, 18(3): 70-73.

刘恂, 沈学举, 殷建玲, 罗赓. 级联晶体倍频器件温度适应性扩展研究[J]. 中国激光, 2018, 45(1): 0108001. Liu Xun, Shen Xueju, Yin Jianling, Luo Geng. Research on Extending Temperature Acceptance Bandwidth of Second Harmonic Generation in Cascaded Crystals[J]. Chinese Journal of Lasers, 2018, 45(1): 0108001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!