强激光与粒子束, 2018, 30 (5): 053007, 网络出版: 2018-05-04  

微波气体放电等离子体与余辉中的动理学研究

Kinetic study on microwave discharge plasma and its afterglow
作者单位
北京应用物理与计算数学研究所, 北京 100094
引用该论文

杨薇, 周前红, 董志伟. 微波气体放电等离子体与余辉中的动理学研究[J]. 强激光与粒子束, 2018, 30(5): 053007.

Yang Wei, Zhou Qianhong, Dong Zhiwei. Kinetic study on microwave discharge plasma and its afterglow[J]. High Power Laser and Particle Beams, 2018, 30(5): 053007.

参考文献

[1] Oda Y, Komurasaki K, Takahashi K, et al. Plasma generation using high-power millimeter-wave beam and its application for thrust generation[J]. J Appl Phys, 2006, 100: 113307.

[2] Granatstein V L, Nusinovich G S. Detecting excess ionizing radiation by electromagnetic breakdown of air[J]. J Appl Phys, 2010, 108: 063304.

[3] Imai T, Kobayashi N, Temkin R, et al. ITER R&D: Auxiliary systems: Electron cyclotron heating and current drive system[J]. Fusion Eng Des, 2001, 55: 281-289.

[4] Hidaka Y, Choi E M, Mastovsky I, et al. Observation of large arrays of plasma filaments in air breakdown by 1.5-MW 110-GHz gyrotron pulses[J]. Phys Rev Lett, 2008, 100: 035003.

[5] Mesko M, Bonaventura Z, Vasina P, et al. An experimental study of high power microwave pulsed discharge in nitrogen[J]. Plasma Sources Sci Technol, 2006, 15: 574-581.

[6] Bonaventura Z, Trunec D, Mesko M, et al. Self-consistent spatio-temporal simulation of pulsed microwave discharge[J]. J Phys D: Appl Phys, 2008, 41: 015210.

[7] Nam S K, Verboncoeur J P. Theory of filamentary plasma array formation in microwave breakdown at near-atmospheric pressure[J]. Phys Rev Lett, 2009, 103: 055004.

[8] Boeuf J P, Chaudhury B, Zhu G. Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure[J]. Phys Rev Lett, 2010, 104: 015002.

[9] Zhou Qianhong, Dong Zhiwei. Modeling study on pressure dependence of plasma structure and formation in 110 GHz microwave air breakdown[J]. Appl Phys Lett, 2011, 98: 161504.

[10] Semenov V E, Rakova E I, Glyavin M Y, et al. Breakdown simulations in a focused microwave beam with the simplified model[J]. Phys Plasma, 2016, 23: 073109.

[11] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Sci Technol, 2005, 14 (4): 722.

[12] Phelps A V, Pitchford L C. Anisotropic scattering of electron by N2 and its effect on electron transport[J]. Phy Rev A, 1985, 31: 2932.

[13] Capitelli M, Ferreira C M, Gordiets B F, et al. Plasma kinetics in atmospheric gases[M]. New York: Springer-Verlag, 2000.

[14] Popov N A. Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism[J]. J Phys D: Appl Phys, 2011, 44: 285201.

[15] Kimura T, Akatsuka K, Ohe K. Experimental and theoretical investigations of DC glow discharges in argon-nitrogen mixtures[J]. J Phys D: Appl Phys, 1994, 27: 1664-1671.

[16] Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Sci Technol, 1992, 1(3): 207.

[17] Aleksandrov N L, Kindysheva S V, Kirpichnikov A A, et al. Plasma decay in N2, CO2 and H2O excited by high-voltage nanosecond discharge[J]. J Phys D: Appl Phys, 2007, 40: 4493-4502.

[18] Florescu-Mitchell A I, Mitchell J B A. Dissociative recombination[J]. Phys Rep, 2006, 430: 277-374.

[19] Yang Wei, Zhou Qianhong, Dong Zhiwei. Simulation study on nitrogen vibrational kinetics in a single nanosecond pulse high voltage air discharge[J]. AIP Adv, 2016, 6: 055209.

[20] 朱国强, Boeuf J P, 李进贤. 压强与功率对高气压空气微波放电自组织结构影响的数值研究[J]. 物理学报 2012, 23: 235202. (Zhu Guoqiang, Boeuf J P, Li Jinxian. Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air. Acta Physica Sinica, 2012, 23: 235202)

[21] Yang Wei, Zhou Qianhong, Dong Zhiwei. Kinetic study on gas discharge plasma generated by focused microwaves[C]//Proc 33rd International Conference on Phenomena in Ionized Gases. 2017: 59.

[22] Mesko M, Bonaventura Z, Vasina P, et al. Electron density measurements in afterglow of high power pulsed microwave discharge[J]. Plasma Sources Sci Technol, 2004, 13: 562-568.

[23] Yang Wei, Zhou Qianhong, Dong Zhiwei. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser[J]. J Appl Phys, 2016, 120: 083302.

[24] Hummelt J S, Shapiro M A, Temkin R J. Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam[J]. Phys Plasmas, 2012, 19: 123509.

[25] 石宝凤, 林文斌, 赵朋程, 等. 等效电离参数对110 GHz高功率微波放电离子体的影响[J]. 中国科学: 物理学 力学 天文学, 2015, 45: 025201. (Shi Baofeng, Lin Wenbin, Zhao Pengcheng, et al. Effect of effective ionization parameters on the 110 GHz high-power microwave discharge plasma in air. Sci Sin-Phys Mech Astron, 2015, 45: 025201)

[26] Yang Wei, Zhou Qianhong, Dong Zhiwei. Simulation study on nitrogen vibrational and translational temperature in air breakdown plasma generated by 110 GHz focused microwave pulse[J]. Phys Plasmas, 2017, 24: 013111.

[27] Yang Wei, Dong Zhiwei. Electron-vibrational energy exchange in nitrogen-containing plasma: a comparison between an analytical approach and a kinetic model[J]. Plasma Sci Technol, 2016, 18(1): 12-16.

[28] 蔡北兵, 余道杰, 周东方, 等. 氧负离子解吸附过程HPM大气击穿弛豫时间分析[J]. 强激光与粒子束, 2017, 29: 113004. (Cai Beibing, Yu Daojie, Zhou Dongfang, et al. Analysis of air breakdown relaxation time of high power microwave based on O- detachment. High Power Laser and Particle Beams, 2017, 29: 113004)

杨薇, 周前红, 董志伟. 微波气体放电等离子体与余辉中的动理学研究[J]. 强激光与粒子束, 2018, 30(5): 053007. Yang Wei, Zhou Qianhong, Dong Zhiwei. Kinetic study on microwave discharge plasma and its afterglow[J]. High Power Laser and Particle Beams, 2018, 30(5): 053007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!