Photonics Research, 2019, 7 (4): 04000452, Published Online: May. 7, 2019  

High power, microjoule-level diffraction-limited picosecond oscillator based on Nd:GdVO4 bulk crystal

Author Affiliations
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Copy Citation Text

Jie Guo, Wei Wang, Hua Lin, Xiaoyan Liang. High power, microjoule-level diffraction-limited picosecond oscillator based on Nd:GdVO4 bulk crystal[J]. Photonics Research, 2019, 7(4): 04000452.

References

[1] A. Major, V. Barzda, P. A. E. Piunno, S. Musikhin, U. J. Krull. An extended cavity diode-pumped femtosecond Yb:KGW laser for applications in optical DNA sensor technology based on fluorescence lifetime measurements. Opt. Express, 2006, 14: 5285-5294.

[2] S. Leveque-Fort, D. N. Papadopoulos, S. Forget, F. Balembois, P. Georges. Fluorescence lifetime imaging with a low-repetition-rate passively mode-locked diode-pumped Nd:YVO4 oscillator. Opt. Lett., 2005, 30: 168-170.

[3] L. Zhao, D. Tang, X. Wu, H. Zhang. Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter. Opt. Lett., 2010, 35: 2756-2758.

[4] D. Herriott, H. Kogelnik, R. Kompfner. Off-axis paths in spherical mirror interferometers. Appl. Opt., 1964, 3: 523-526.

[5] A. Sennaroglu, J. G. Fujimoto. Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers. Opt. Express, 2003, 11: 1106-1113.

[6] SennarogluA., Solid-State Lasers and Applications (CRC Press, 2007).

[7] A. Mostafazadeh, H. Cankaya, A. Sennaroglu. Pulse energy optimization in multipass-cavity mode-locked femtosecond lasers. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 1100408.

[8] R. P. Prasankumar, Y. Hirakawa, A. M. Kowalevicz, F. X. Kaertner, J. G. Fujimoto, W. H. Knox. An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers. Opt. Express, 2003, 11: 1265-1269.

[9] C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, A. Sennaroglu. 70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser. Opt. Lett., 2018, 43: 1315-1318.

[10] A. Sennaroglu, A. M. Kowalevicz, F. X. Kaertner, J. G. Fujimoto. High, performance, compact, prismless, low-threshold 30-MHz Ti:Al2O3 laser. Opt. Lett., 2003, 28: 1674-1676.

[11] H. Cankaya, J. G. Fujimoto, A. Sennaroglu. Low-threshold, 12-MHz, multipass-cavity femtosecond Cr4+:forsterite laser. Laser Phys., 2009, 19: 281-284.

[12] V. Z. Kolev, M. J. Lederer, B. Luther-Davies, A. V. Rode. Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator. Opt. Lett., 2003, 28: 1275-1277.

[13] B. Luther-Davies, E. Gamaly, A. Rode, V. Kolev, N. Madsen, M. Duering, J. Giesekus. Applications of high power slow mode-locked lasers for ablation and non-linear optics. Proc. SPIE, 2004, 5448: 432-440.

[14] Y. Ruan, B. Luther-Davies, W. Li, A. Rode, V. Kolev, S. Madden. Large phase shifts in As2S3 waveguides for all-optical processing devices. Opt. Lett., 2005, 30: 2605-2607.

[15] G. I. Petrov, N. I. Minkovski, V. V. Yakovlev. High-energy ultrashort laser pulses from a simple oscillator and their efficient frequency conversion. Proc. SPIE, 2004, 5332: 55-62.

[16] C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Sudmeyer, U. Keller. Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power. Opt. Lett., 2014, 39: 9-12.

[17] A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, B. Luther-Davies, J. M. Dawes, A. Chan. Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis. Proc. SPIE, 2004, 5340: 76-86.

[18] B. Luther-Davies, A. V. Rode, N. R. Madsen, E. G. Gamaly. Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses. Opt. Eng., 2005, 44: 051102.

[19] E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, B. Luther-Davies. Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface. Phys. Rev. B, 2005, 71: 174405.

[20] P. Gao, H. Lin, J. Li, J. Guo, H. Yu, H. Zhang, X. Liang. Megahertz-level, high-power picosecond Nd:LuVO4 regenerative amplifier free of period doubling. Opt. Express, 2016, 24: 13963-13970.

[21] B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K. M. Du, M. Duering. Table–top 50-W laser system for ultra-fast laser ablation. Appl. Phys. A, 2004, 79: 1051-1055.

[22] U. Wegner, J. Meier, M. J. Lederer. Compact picosecond mode-locked and cavity-dumped Nd:YVO4 laser. Opt. Express, 2009, 17: 23098-23103.

[23] P. Gao, J. Guo, J. F. Li, H. Lin, X. Liang. 34.7  μJ, < 10  ps, megahertz-level laser output based on a cavity-dumped mode-locked Nd:GdVO4 oscillator. Opt. Express, 2015, 23: 17995-18001.

[24] C. Gerhard, F. Druon, P. Georges, V. Couderc, P. Leproux. Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror. Opt. Express, 2006, 14: 7093-7098.

[25] H. Lin, J. Guo, P. Gao, H. Yu, X. Liang. High power, diffraction limited picosecond oscillator based on Nd:GdVO4 bulk crystal with σ polarized in-band pumping. Opt. Express, 2016, 24: 13957-13962.

[26] V. Magni. Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability. Appl. Opt., 1986, 25: 107-117.

[27] A. M. Kowalevicz, A. Sennaroglu, A. T. Zare, J. G. Fujimoto. Design principles of q-preserving multipass-cavity femtosecond lasers. J. Opt. Soc. Am. B, 2006, 23: 760-770.

Jie Guo, Wei Wang, Hua Lin, Xiaoyan Liang. High power, microjoule-level diffraction-limited picosecond oscillator based on Nd:GdVO4 bulk crystal[J]. Photonics Research, 2019, 7(4): 04000452.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!