Photonics Research, 2019, 7 (11): 11001340, Published Online: Nov. 1, 2019   

Dual waveband generator of perfect vector beams Download: 654次

Author Affiliations
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 e-mail: liuhaigang@sjtu.edu.cn
3 e-mail: xfchen@sjtu.edu.cn
Copy Citation Text

Hui Li, Haigang Liu, Xianfeng Chen. Dual waveband generator of perfect vector beams[J]. Photonics Research, 2019, 7(11): 11001340.

References

[1] E. Snitzer. Cylindrical dielectric waveguide modes. J. Opt. Soc. Am., 1961, 51: 491-498.

[2] G. Bautista, M. Kauranen. Vector-field nonlinear microscopy of nanostructures. ACS Photon., 2016, 3: 1351-1370.

[3] C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, X. Yuan. Focused plasmonic trapping of metallic particles. Nat. Commun., 2013, 4: 2891.

[4] S. E. Skelton, M. Sergides, R. Saija, M. A. Iatì, O. M. Maragó, P. H. Jones. Trapping volume control in optical tweezers using cylindrical vector beams. Opt. Lett., 2013, 38: 28-30.

[5] C. Hnatovsky, V. G. Shvedov, W. Krolikowski. The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses. Opt. Express, 2013, 21: 12651-12656.

[6] M. Meier, V. Romano, T. Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A, 2007, 86: 329-334.

[7] C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode. Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett., 2011, 106: 123901.

[8] R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, P. G. Kazansky. Laser material processing with tightly focused cylindrical vector beams. Appl. Phys. Lett., 2016, 108: 221107.

[9] X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, H. T. Wang. Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett., 2010, 105: 253602.

[10] Y. I. Salamin, Z. Harman, C. H. Keitel. Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett., 2008, 100: 155004.

[11] A. F. Abouraddy, K. C. Toussaint. Three-dimensional polarization control in microscopy. Phys. Rev. Lett., 2006, 96: 153901.

[12] C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, G. Leuchs. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes. Phys. Rev. Lett., 2011, 106: 060502.

[13] V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, J. Laurat. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun., 2015, 6: 7706.

[14] G. Machavariani, Y. Lumer, I. Moshe, S. Jackel, N. Davidson. Efficient conversion of a radially-polarized beam to a nearly-Gaussian beam. Opt. Lett., 2007, 32: 924-926.

[15] Y. Kozawa, S. Sato. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett., 2005, 30: 3063-3065.

[16] X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, H. T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 2007, 32: 3549-3551.

[17] X. Wang, Y. Li, J. Chen, C. Guo, J. Ding, H. Wang. A new type of vector fields with hybrid states of polarization. Opt. Express, 2010, 18: 10786-10795.

[18] W. Han, Y. Yang, W. Cheng, Q. Zhan. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 2013, 21: 20692-20706.

[19] H. Liu, H. Li, Y. Zheng, X. Chen. Nonlinear frequency conversion and manipulation of vector beams. Opt. Lett., 2018, 43: 5981-5984.

[20] F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, X. Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 2016, 3: 1558-1563.

[21] P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, Y. Lu. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Appl. Phys. Lett., 2015, 107: 241102.

[22] R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, Y. Lu. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Phys. Rev. Appl., 2018, 10: 034061.

[23] L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, Y. Li. Generation of cylindrically polarized vector vortex beams with digital micromirror device. J. Appl. Phys., 2014, 116: 183105.

[24] Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, D. Fan. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci. Rep., 2017, 7: 44096.

[25] D. Li, C. Chang, S. Nie, S. Feng, J. Ma, C. Yuan. Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase. Appl. Phys. Lett., 2018, 113: 121101.

[26] P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao. Generation of perfect vectorial vortex beams. Opt. Lett., 2016, 41: 2205-2208.

[27] L. Li, C. Chang, C. Yuan, S. Feng, S. Nie, Z. C. Ren, H. T. Wang, J. Ding. High efficiency generation of tunable ellipse perfect vector beams. Photon. Res., 2018, 6: 1116-1123.

[28] Y. S. Fu, C. Gao, T. Wang, S. Zhang, Y. Zhai. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt. Lett., 2016, 41: 5454-5457.

[29] H. Li, H. Liu, X. Chen. Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer. Appl. Phys. Lett., 2019, 114: 241901.

[30] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 2015, 40: 597-600.

Hui Li, Haigang Liu, Xianfeng Chen. Dual waveband generator of perfect vector beams[J]. Photonics Research, 2019, 7(11): 11001340.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!