激光与光电子学进展, 2019, 56 (11): 110006, 网络出版: 2019-06-13   

石墨烯纳机电系统及其与光纤的集成研究 下载: 1215次封面文章特邀综述

Graphene Nanoelectromechanical System and Its Integration with Optical Fiber
作者单位
南京大学现代工程与应用科学学院, 江苏 南京 210093
引用该论文

刘增勇, 曹鸿谦, 徐飞, 陆延青. 石墨烯纳机电系统及其与光纤的集成研究[J]. 激光与光电子学进展, 2019, 56(11): 110006.

Zengyong Liu, Hongqian Cao, Fei Xu, Yanqing Lu. Graphene Nanoelectromechanical System and Its Integration with Optical Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110006.

参考文献

[1] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

    Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[2] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

    Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

[3] Frank I W. Tanenbaum D M, van der Zande A M, et al. Mechanical properties of suspended graphene sheets[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2007, 25(6): 2558-2561.

    Frank I W. Tanenbaum D M, van der Zande A M, et al. Mechanical properties of suspended graphene sheets[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2007, 25(6): 2558-2561.

[4] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[5] Singh V, Shevchuk O, Blanter Y M, et al. Negative nonlinear damping of a multilayer graphene mechanical resonator[J]. Physical Review B, 2016, 93(24): 245407.

    Singh V, Shevchuk O, Blanter Y M, et al. Negative nonlinear damping of a multilayer graphene mechanical resonator[J]. Physical Review B, 2016, 93(24): 245407.

[6] Chen C Y, Deshpande V V, Koshino M, et al. Modulation of mechanical resonance by chemical potential oscillation in graphene[J]. Nature Physics, 2016, 12(3): 240-244.

    Chen C Y, Deshpande V V, Koshino M, et al. Modulation of mechanical resonance by chemical potential oscillation in graphene[J]. Nature Physics, 2016, 12(3): 240-244.

[7] Ghahari F, Walkup D, Gutiérrez C, et al. An on/off Berry phase switch in circular graphene resonators[J]. Science, 2017, 356(6340): 845-849.

    Ghahari F, Walkup D, Gutiérrez C, et al. An on/off Berry phase switch in circular graphene resonators[J]. Science, 2017, 356(6340): 845-849.

[8] Chen C Y, Rosenblatt S, Bolotin K I, et al. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 2009, 4(12): 861-867.

    Chen C Y, Rosenblatt S, Bolotin K I, et al. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 2009, 4(12): 861-867.

[9] Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration[J]. Light: Science & Applications, 2016, 5(5): e16074.

    Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration[J]. Light: Science & Applications, 2016, 5(5): e16074.

[10] Barrias A, Casas J, Villalba S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 2016, 16(5): 748.

    Barrias A, Casas J, Villalba S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 2016, 16(5): 748.

[11] Ramakrishnan M, Rajan G, Semenova Y, et al. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials[J]. Sensors, 2016, 16(1): 99.

    Ramakrishnan M, Rajan G, Semenova Y, et al. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials[J]. Sensors, 2016, 16(1): 99.

[12] Ma J, Jin W, Xuan H F, et al. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film[J]. Optics Letters, 2014, 39(16): 4769-4772.

    Ma J, Jin W, Xuan H F, et al. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film[J]. Optics Letters, 2014, 39(16): 4769-4772.

[13] Robinson J T, Zalalutdinov M, Baldwin J W, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices[J]. Nano Letters, 2008, 8(10): 3441-3445.

    Robinson J T, Zalalutdinov M, Baldwin J W, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices[J]. Nano Letters, 2008, 8(10): 3441-3445.

[14] Shivaraman S, Barton R A, Yu X, et al. Free-standing epitaxial graphene[J]. Nano Letters, 2009, 9(9): 3100-3105.

    Shivaraman S, Barton R A, Yu X, et al. Free-standing epitaxial graphene[J]. Nano Letters, 2009, 9(9): 3100-3105.

[15] Song X F, Oksanen M, Sillanpää M A, et al. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout[J]. Nano Letters, 2012, 12(1): 198-202.

    Song X F, Oksanen M, Sillanpää M A, et al. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout[J]. Nano Letters, 2012, 12(1): 198-202.

[16] BlaikieA, MillerD, Alemán B J. A fast, sensitive, room-temperature graphene nanomechanicalbolometer[EB/OL]. ( 2018-10-31)[2018-12-25]. https:∥arxiv.org/abs/1810. 13422.

    BlaikieA, MillerD, Alemán B J. A fast, sensitive, room-temperature graphene nanomechanicalbolometer[EB/OL]. ( 2018-10-31)[2018-12-25]. https:∥arxiv.org/abs/1810. 13422.

[17] Garcia-Sanchez D, Paulo A S, et al. . Imaging mechanical vibrations in suspended graphene sheets[J]. Nano Letters, 2008, 8(5): 1399-1403.

    Garcia-Sanchez D, Paulo A S, et al. . Imaging mechanical vibrations in suspended graphene sheets[J]. Nano Letters, 2008, 8(5): 1399-1403.

[18] Bunch J S, Verbridge S S, et al. . Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.

    Bunch J S, Verbridge S S, et al. . Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.

[19] Barton R A. Ilic B, van der Zande A M, et al. High, size-dependent quality factor in an array of graphene mechanical resonators[J]. Nano Letters, 2011, 11(3): 1232-1236.

    Barton R A. Ilic B, van der Zande A M, et al. High, size-dependent quality factor in an array of graphene mechanical resonators[J]. Nano Letters, 2011, 11(3): 1232-1236.

[20] Barton R A, Alden J S, et al. . Large-scale arrays of single-layer graphene resonators[J]. Nano Letters, 2010, 10(12): 4869-4873.

    Barton R A, Alden J S, et al. . Large-scale arrays of single-layer graphene resonators[J]. Nano Letters, 2010, 10(12): 4869-4873.

[21] Liu ZY, Yan SC, Lu ZD, et al. A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles[C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington D. C.: OSA, 2018: W3A. 76.

    Liu ZY, Yan SC, Lu ZD, et al. A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles[C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington D. C.: OSA, 2018: W3A. 76.

[22] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.

    Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.

[23] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.

    Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.

[24] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.

    Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.

[25] Reserbat-Plantey A, Schädler K G, Gaudreau L, et al. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS[J]. Nature Communications, 2016, 7: 10218.

    Reserbat-Plantey A, Schädler K G, Gaudreau L, et al. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS[J]. Nature Communications, 2016, 7: 10218.

[26] Luo G, Zhang Z Z, Deng G W, et al. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity[J]. Nature Communications, 2018, 9: 383.

    Luo G, Zhang Z Z, Deng G W, et al. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity[J]. Nature Communications, 2018, 9: 383.

[27] ChristopoulosT, TsilipakosO, GrivasN, et al. Modeling nonlinear resonators comprising graphene: a coupled mode theory approach[C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California United States. Washington D. C.: OSA, 2017: FTu3H. 3.

    ChristopoulosT, TsilipakosO, GrivasN, et al. Modeling nonlinear resonators comprising graphene: a coupled mode theory approach[C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California United States. Washington D. C.: OSA, 2017: FTu3H. 3.

[28] Chang W J, Lee H L. Mass detection using a double-layer circular graphene-based nanomechanical resonator[J]. Journal of Applied Physics, 2014, 116(3): 034303.

    Chang W J, Lee H L. Mass detection using a double-layer circular graphene-based nanomechanical resonator[J]. Journal of Applied Physics, 2014, 116(3): 034303.

[29] Verbiest G J, Kirchhof J N, Sonntag J, et al. Detecting ultrasound vibrations with graphene resonators[J]. Nano Letters, 2018, 18(8): 5132-5137.

    Verbiest G J, Kirchhof J N, Sonntag J, et al. Detecting ultrasound vibrations with graphene resonators[J]. Nano Letters, 2018, 18(8): 5132-5137.

[30] Jiang S W, Gong X H, Guo X, et al. Potential application of graphene nanomechanical resonator as pressure sensor[J]. Solid State Communications, 2014, 193: 30-33.

    Jiang S W, Gong X H, Guo X, et al. Potential application of graphene nanomechanical resonator as pressure sensor[J]. Solid State Communications, 2014, 193: 30-33.

[31] Singh V, Sengupta S, Solanki H S, et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators[J]. Nanotechnology, 2010, 21(16): 165204.

    Singh V, Sengupta S, Solanki H S, et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators[J]. Nanotechnology, 2010, 21(16): 165204.

[32] 王文华, 熊正烨, 师文庆, 等. 光纤表面等离子体共振传感技术[J]. 激光与光电子学进展, 2017, 54(9): 090008.

    王文华, 熊正烨, 师文庆, 等. 光纤表面等离子体共振传感技术[J]. 激光与光电子学进展, 2017, 54(9): 090008.

    Wang W H, Xiong Z Y, Shi W Q, et al. Fiber-optic surface plasmon resonance sensing technology[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090008.

    Wang W H, Xiong Z Y, Shi W Q, et al. Fiber-optic surface plasmon resonance sensing technology[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090008.

[33] 李晨, 陆雪琪, 庾财斌, 等. 基于多层石墨烯材料的光纤声波传感器[J]. 光学学报, 2018, 38(3): 0328017.

    李晨, 陆雪琪, 庾财斌, 等. 基于多层石墨烯材料的光纤声波传感器[J]. 光学学报, 2018, 38(3): 0328017.

    Li C, Lu X Q, Yu C B, et al. Fiber-optic acoustic sensor based on multi-layered graphene material[J]. Acta Optica Sinica, 2018, 38(3): 0328017.

    Li C, Lu X Q, Yu C B, et al. Fiber-optic acoustic sensor based on multi-layered graphene material[J]. Acta Optica Sinica, 2018, 38(3): 0328017.

[34] 吴永红, 朱莎, 许蔚, 等. 分布式光纤裂缝传感工程应用研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090002.

    吴永红, 朱莎, 许蔚, 等. 分布式光纤裂缝传感工程应用研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090002.

    Wu Y H, Zhu S, Xu W, et al. Progress in distributed optical fiber crack sensing engineering[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090002.

    Wu Y H, Zhu S, Xu W, et al. Progress in distributed optical fiber crack sensing engineering[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090002.

[35] Tan Y Z, Zhang C Z, Jin W, et al. Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 199-209.

    Tan Y Z, Zhang C Z, Jin W, et al. Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 199-209.

[36] Liu ZY, XuF. Miniature sensor based on fiber-graphene-integrated NEMS[C]∥2017 16th International Conference on Optical Communications and Networks (ICOCN), August 7-10, 2017, Wuzhen, China. New York: IEEE, 2017: 17466235.

    Liu ZY, XuF. Miniature sensor based on fiber-graphene-integrated NEMS[C]∥2017 16th International Conference on Optical Communications and Networks (ICOCN), August 7-10, 2017, Wuzhen, China. New York: IEEE, 2017: 17466235.

刘增勇, 曹鸿谦, 徐飞, 陆延青. 石墨烯纳机电系统及其与光纤的集成研究[J]. 激光与光电子学进展, 2019, 56(11): 110006. Zengyong Liu, Hongqian Cao, Fei Xu, Yanqing Lu. Graphene Nanoelectromechanical System and Its Integration with Optical Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110006.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!