中国激光, 2018, 45 (4): 0406003, 网络出版: 2018-04-13   

2 μm波段高双折射微结构磁流体光纤特性研究 下载: 910次

Characteristics Investigation of High Birefringent Micro-Structured Optical Fiber Filled with Magnetic Fluid at 2 μm Band
作者单位
1 北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
2 河北工业大学电子信息工程学院, 天津 300401
引用该论文

郭玉玉, 延凤平, 刘硕, 张鲁娜. 2 μm波段高双折射微结构磁流体光纤特性研究[J]. 中国激光, 2018, 45(4): 0406003.

Guo Yuyu, Yan Fengping, Liu Shuo, Zhang Luna. Characteristics Investigation of High Birefringent Micro-Structured Optical Fiber Filled with Magnetic Fluid at 2 μm Band[J]. Chinese Journal of Lasers, 2018, 45(4): 0406003.

参考文献

[1] 马锡英. 光子晶体原理及应用[M]. 北京: 科学出版社, 2010.

    Ma XY. Principle and application of photonic crystal[M]. Beijing: Science Press, 2010.

[2] 何理, 杨伯君, 张晓光, 等. 光子晶体光纤特性及光通信中的应用[J]. 量子光学学报, 2006, 12(4): 225-230.

    He L, Yang B J, Zhang X G, et al. Characteristics of photonic crystal fiber and its application in optical communication[J]. Acta Sinica Quantum Optica, 2006, 12(4): 225-230.

[3] Zhou G Y, Hou Z Y, Li S G. et al. Fabrication of glass photonic crystal fibers with a die-cast process[J]. Applied Optics, 2006, 45(18): 4433-4436.

[4] Humbert G, Knight J C, Bouwmans G, et al. Hollow core photonic crystal fibers for beam delivery[J]. Optics Express, 2004, 12(8): 1477-1484.

[5] Liu Z Y, Wu C. Tse M L V, et al. Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination[J]. Optics Letters, 2013, 38(9): 1385-1387.

[6] Tan X L, Geng Y F, Zhou J. A novel ultrahigh birefringent hole-assistant microstructured optical fiber with low confinement loss[J]. Optics & Laser Technology, 2011, 43(7): 1331-1334.

[7] Rashleigh S C. Wavelength dependence of birefringence in highly birefringent fibers[J]. Optics Letters, 1982, 7(6): 294-296.

[8] An L, Zheng Z, Li Z, et al. Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss using four airholes in the core[J]. Journal of Lightwave Technology, 2009, 27(15): 3175-3180.

[9] 刘旭安, 吴根柱, 陈达如, 等. 基于椭圆孔包层和微型双孔纤芯的新型高双折射光子晶体光纤[J]. 光子学报, 2011, 40(11): 1728-1732.

    Liu X A, Wu G Z, Chen D R, et al. Novel highly birefringent photonic crystal fiber based on an elliptical hole fiber cladding and a fiber core of double micro hole units[J]. Acta Photonica Sinica, 2011, 40(11): 1728-1732.

[10] Bakuzis A F, Neto K S, Gravina P P, et al. Magneto-optical properties of a highly transparent cadmium ferrite-based magnetic fluid[J]. Applied Physics Letters, 2004, 84(13): 2355-2357.

[11] 吴迪, 赵勇, 吕日清, 等. 磁流体的折射率可调谐特性分析[J]. 东北大学学报(自然科学版), 2014, 35(7): 931-934.

    Wu D, Zhao Y, Lü R Q, et al. Analysis of tunable refractive index characteristics of the magnetic fluid[J]. Journal of Northeastern University, 2014, 35(7): 931-934.

[12] 蔺际超. 基于磁流体包覆复合光纤光栅的磁场传感器研究[D]. 天津: 天津理工大学, 2015.

    Lin JC. Study of magnetic field sensing based on composite fiber gratings coated with magnetic fluid[D]. Tianjin: Tianjin University of Technology, 2015.

[13] 刘沛沛, 白杨, 任兆玉, 等. 2 μm光纤激光器的研究进展[J]. 红外与激光工程, 2009, 38(1): 45-49.

    Liu P P, Bai Y, Ren Z Y, et al. Research and progress of 2 μm fiber lasers[J]. Infrared and Laser Engineering, 2009, 38(1): 45-49.

[14] 刘江, 王璞. 高功率窄线宽全光纤结构掺铥连续光纤激光器[J]. 中国激光, 2013, 40(1): 0102001.

    Liu J, Wang P. High-power narrow-bandwidth continuous wave thulium-doped all-fiber laser[J]. Chinese Journal of Lasers, 2013, 40(1): 0102001.

[15] 杨昌盛, 陈丹, 赵齐来, 等. 2.0 μm波段掺铥连续单频光纤激光器的研究进展[J]. 中国激光, 2017, 44(2): 0201006.

    Yang C S, Chen D, Zhao Q L, et al. Research progress of 2.0 μm-band Tm-doped continuous wave single-frequency fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201006.

[16] 任晓敏, 李晓, 王志斌, 等. 高写入效率的大圆孔微结构光纤光栅[J]. 中国激光, 2013, 40(8): 0805001.

    Ren X M, Li X, Wang Z B, et al. Large side-hole microstructured optical fiber grating with high inscription efficiency[J]. Chinese Journal of Lasers, 2013, 40(8): 0805001.

[17] 郭巍, 周桂耀, 倪永婧, 等. 利用改进的堆积法制备微结构光纤[J]. 光电子·激光, 2006, 17(9): 1035-1038.

    Guo W, Zhou G Y, Ni Y J, et al. Fabrication of micro-structure fiber by improved stacking capillary method[J]. Journal of Optoelectronics·Laser, 2006, 17(9): 1035-1038.

[18] 刘妍. 基于磁流体填充微结构光纤和模式耦合的光纤传感技术[D]. 南京: 南开大学, 2012.

    LiuY. Optical fiber sensing technology based on magnetic fluid filled microstructured optical fiber and mode coupling[D]. Nanjing: Nankai University, 2012.

[19] Shen Y H, Qiu Y Q, Wu B. et al. Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range[J]. Optics Express, 2007, 15(2): 363-370.

[20] Arif M F H, Biddut M J H. A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications[J]. Sensing and Bio-Sensing Research, 2017, 12: 8-14.

郭玉玉, 延凤平, 刘硕, 张鲁娜. 2 μm波段高双折射微结构磁流体光纤特性研究[J]. 中国激光, 2018, 45(4): 0406003. Guo Yuyu, Yan Fengping, Liu Shuo, Zhang Luna. Characteristics Investigation of High Birefringent Micro-Structured Optical Fiber Filled with Magnetic Fluid at 2 μm Band[J]. Chinese Journal of Lasers, 2018, 45(4): 0406003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!