中国激光, 2018, 45 (8): 0810002, 网络出版: 2018-08-11   

大气闪烁对相干态量子干涉雷达探测性能的影响 下载: 740次

Influence of Atmospheric Scintillation on Detection Performance of Coherent State Quantum Interferometric Radar
作者单位
1 中国科学院安徽光学精密机械研究所大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 光电对抗测试评估技术重点实验室, 河南 洛阳 471003
引用该论文

王书, 任益充, 饶瑞中, 苗锡奎. 大气闪烁对相干态量子干涉雷达探测性能的影响[J]. 中国激光, 2018, 45(8): 0810002.

Wang Shu, Ren Yichong, Rao Ruizhong, Miao Xikui. Influence of Atmospheric Scintillation on Detection Performance of Coherent State Quantum Interferometric Radar[J]. Chinese Journal of Lasers, 2018, 45(8): 0810002.

参考文献

[1] 肖怀铁, 刘康, 范红旗. 量子雷达及其目标探测性能综述[J]. 国防科技大学学报, 2014, 36(6): 140-145.

    肖怀铁, 刘康, 范红旗. 量子雷达及其目标探测性能综述[J]. 国防科技大学学报, 2014, 36(6): 140-145.

    Xiao H T, Liu K, Fan H Q. Overview of quantum radar and target detection performance[J]. Journal of National University of Defense Technology, 2014, 36(6): 140-145.

    Xiao H T, Liu K, Fan H Q. Overview of quantum radar and target detection performance[J]. Journal of National University of Defense Technology, 2014, 36(6): 140-145.

[2] 江涛, 孙俊. 量子雷达探测目标的基本原理与进展[J]. 中国电子科学研究院学报, 2014, 9(1): 10-16.

    江涛, 孙俊. 量子雷达探测目标的基本原理与进展[J]. 中国电子科学研究院学报, 2014, 9(1): 10-16.

    Jiang T, Sun J. The principle and development of quantum radar detection target[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(1): 10-16.

    Jiang T, Sun J. The principle and development of quantum radar detection target[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(1): 10-16.

[3] 徐世龙, 胡以华, 赵楠翔, 等. 金属目标原子晶格结构对其量子雷达散射截面的影响[J]. 物理学报, 2015, 64(15): 154203.

    徐世龙, 胡以华, 赵楠翔, 等. 金属目标原子晶格结构对其量子雷达散射截面的影响[J]. 物理学报, 2015, 64(15): 154203.

    Xu S L, Hu Y H, Zhao N X, et al. Impact of metal target's atom lattice structure on its quantum radar cross-section[J]. Acta Physica Sinica, 2015, 64(15): 154203.

    Xu S L, Hu Y H, Zhao N X, et al. Impact of metal target's atom lattice structure on its quantum radar cross-section[J]. Acta Physica Sinica, 2015, 64(15): 154203.

[4] Bakut P A. The potential applicability of radar in the presence of quantum and thermal fluctuations of the field(point source detection using signals propagating in quantum field, in terms of correlation functions of thermal field fluctuations)[J]. Radio Engineering and Electronic Physics, 1967, 12: 1-9.

    Bakut P A. The potential applicability of radar in the presence of quantum and thermal fluctuations of the field(point source detection using signals propagating in quantum field, in terms of correlation functions of thermal field fluctuations)[J]. Radio Engineering and Electronic Physics, 1967, 12: 1-9.

[5] Jehle RE, Hudson D F. Impulse transmitter and quantum detection radar system: US5095312[P].1992-03-10.

    Jehle RE, Hudson D F. Impulse transmitter and quantum detection radar system: US5095312[P].1992-03-10.

[6] KumarP, GrigoryanV, VasilyevM. Noise-free amplification: towards quantum laser radar[C]∥14th Coherent Laser Radar Conference, Snowmass, Colorado, 2007: 9- 13.

    KumarP, GrigoryanV, VasilyevM. Noise-free amplification: towards quantum laser radar[C]∥14th Coherent Laser Radar Conference, Snowmass, Colorado, 2007: 9- 13.

[7] Wasilousky P A, Smith K H, Glasser R, et al. Quantum enhancement of a coherent ladar receiver using phase-sensitive amplification[J]. Proceedings of SPIE, 2011, 8163: 816305.

    Wasilousky P A, Smith K H, Glasser R, et al. Quantum enhancement of a coherent ladar receiver using phase-sensitive amplification[J]. Proceedings of SPIE, 2011, 8163: 816305.

[8] 王书, 任益充, 饶瑞中, 等. 大气损耗对量子干涉雷达的影响机理[J]. 物理学报, 2017, 66(15): 150301.

    王书, 任益充, 饶瑞中, 等. 大气损耗对量子干涉雷达的影响机理[J]. 物理学报, 2017, 66(15): 150301.

    Wang S, Ren Y C, Rao R Z, et al. Influence of atmosphere attenuation on quantum interferometric radar[J]. Acta Physica Sinica, 2017, 66(15): 150301.

    Wang S, Ren Y C, Rao R Z, et al. Influence of atmosphere attenuation on quantum interferometric radar[J]. Acta Physica Sinica, 2017, 66(15): 150301.

[9] Distante E, Ježek M, Andersen U L. Deterministic superresolution with coherent states at the shot noise limit[J]. Physical Review Letters, 2013, 111(3): 033603.

    Distante E, Ježek M, Andersen U L. Deterministic superresolution with coherent states at the shot noise limit[J]. Physical Review Letters, 2013, 111(3): 033603.

[10] Tatarskii V I. The effects of the turbulent atmosphere on wave propagation[J/OL]. Jerusalem: Israel Program for Scientific Translations, 1971[ 2018-02-10]. http:∥adsabs.harvard.edu/full/1971etaw.book...T.

    Tatarskii V I. The effects of the turbulent atmosphere on wave propagation[J/OL]. Jerusalem: Israel Program for Scientific Translations, 1971[ 2018-02-10]. http:∥adsabs.harvard.edu/full/1971etaw.book...T.

[11] Fante R L. Electromagnetic beam propagation in turbulent media[J]. Proceedings of the IEEE, 1975, 63(12): 1669-1692.

    Fante R L. Electromagnetic beam propagation in turbulent media[J]. Proceedings of the IEEE, 1975, 63(12): 1669-1692.

[12] Fante R L. Electromagnetic beam propagation in turbulent media: an update[J]. Proceedings of the IEEE, 1980, 68(11): 1424-1443.

    Fante R L. Electromagnetic beam propagation in turbulent media: an update[J]. Proceedings of the IEEE, 1980, 68(11): 1424-1443.

[13] 饶瑞中. 光在湍流大气中的传播[M]. 合肥: 安徽科学技术出版社, 2005: 180- 202.

    饶瑞中. 光在湍流大气中的传播[M]. 合肥: 安徽科学技术出版社, 2005: 180- 202.

    Rao RZ. Light propagation in the turbulent atmosphere[M]. Hefei: Anhui Science and Technology Publishing Press, 2005: 180- 202.

    Rao RZ. Light propagation in the turbulent atmosphere[M]. Hefei: Anhui Science and Technology Publishing Press, 2005: 180- 202.

[14] Shapiro J H. Near-field turbulence effects on quantum-key distribution[J]. Physical Review A, 2003, 67(2): 022309.

    Shapiro J H. Near-field turbulence effects on quantum-key distribution[J]. Physical Review A, 2003, 67(2): 022309.

[15] Tang F, Zhu B. Scintillation discriminator improves free-space quantum key distribution[J]. Chinese Optics Letters, 2013, 11(9): 090101.

    Tang F, Zhu B. Scintillation discriminator improves free-space quantum key distribution[J]. Chinese Optics Letters, 2013, 11(9): 090101.

[16] Semenov A A, Vogel W. Quantum light in theturbulent atmosphere[J]. Physical Review A, 2009, 80(2): 021802.

    Semenov A A, Vogel W. Quantum light in theturbulent atmosphere[J]. Physical Review A, 2009, 80(2): 021802.

[17] Vasylyev D Y, Semenov A A, Vogel W. Toward global quantum communication: beam wandering preserves nonclassicality[J]. Physical Review Letters, 2012, 108(22): 220501.

    Vasylyev D Y, Semenov A A, Vogel W. Toward global quantum communication: beam wandering preserves nonclassicality[J]. Physical Review Letters, 2012, 108(22): 220501.

[18] 饶瑞中. 现代大气光学[J]. 北京: 科学出版社, 2012: 433- 442.

    饶瑞中. 现代大气光学[J]. 北京: 科学出版社, 2012: 433- 442.

    Rao RZ. Modern atmospheric optics[M]. Beijing: Science Press, 2012: 433- 442.

    Rao RZ. Modern atmospheric optics[M]. Beijing: Science Press, 2012: 433- 442.

[19] Vasylyev D Y, Semenov A A, Vogel W. Toward global quantum communication: beam wandering preserves nonclassicality[J]. Physical Review Letters, 2012, 108(22): 220501.

    Vasylyev D Y, Semenov A A, Vogel W. Toward global quantum communication: beam wandering preserves nonclassicality[J]. Physical Review Letters, 2012, 108(22): 220501.

王书, 任益充, 饶瑞中, 苗锡奎. 大气闪烁对相干态量子干涉雷达探测性能的影响[J]. 中国激光, 2018, 45(8): 0810002. Wang Shu, Ren Yichong, Rao Ruizhong, Miao Xikui. Influence of Atmospheric Scintillation on Detection Performance of Coherent State Quantum Interferometric Radar[J]. Chinese Journal of Lasers, 2018, 45(8): 0810002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!