强激光与粒子束, 2018, 30 (6): 060201, 网络出版: 2018-06-12   

高平均功率光纤激光技术基础: 模式

Fundamentals of high-average-power fiber laser technology: Mode
周朴 *
作者单位
国防科技大学 前沿交叉学科学院, 长沙 410073
引用该论文

周朴. 高平均功率光纤激光技术基础: 模式[J]. 强激光与粒子束, 2018, 30(6): 060201.

Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30(6): 060201.

参考文献

[1] Shiner B. Recent progress in high power fiber lasers[R]. Laser Applications Workshop, 2009.

[2] Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser[C]//Advanced Solid State Laser. 2013: ATh4A.2.

[3] http://www.ipgphotonics.com

[4] Gapontsev V, Fomin V, Ferin A, et al. Diffraction limited ultra-high-power fibre lasers[C]//Advanced Solid State Laser. 2010: AWA1.

[5] Protz R, Zoz J, Geidek F, et al. High-power beam combining—a step to a future laser weapon system[C]//Proc of SPIE. 2012: 854708.

[6] Injeyan H, Pflug G C, Vespucci M T. High power laser handbook[M]. New York: McGraw-Hill, 2011.

[7] YLS series 10-100 kW datasheet [DB/OL]. http://www.ipgphotonics.com

[8] Paschotta R. Field guide to optical fiber technology[M]. New York: SPIE Press, 2010.

[9] Okamoto K. Fundamentals of optical waveguides[M]. New York: Academic Press, 2010.

[10] 廖延彪, 金慧明. 光纤光学[M]. 北京: 清华大学出版社, 1992. (Liao Yanbiao, Jin Huiming. Fiber optics. Beijing: Tsinghua University Press, 1992)

[11] 黄良金. 大功率光纤激光器的模式分解及模式控制[D]. 长沙: 国防科学技术大学, 2016.(Huang Liangjin. Mode decomposition and mode control of high-power fiber lasers. Changsha: National University of Defense Technology, 2016)

[12] Yoda H, Polynkin P, Mansuripur M. Beam quality factor of higher order modes in a step-index fiber[J]. Journal of Lightwave Technology, 2006, 24(3): 1350-1355.

[13] Siegman A E. How to (maybe) measure laser beam quality[C]//Diode Pumped Solid State Lasers: Applications and Issues. 1998: MQ1.

[14] Siegman A E. Defining and measuring laser beam quality[M]//Solid State Lasers. 1993: 13-28.

[15] Zhou Pu, Liu Zejin, Xu Xiaojun, et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Applied Optics, 2008, 47(18): 3350-3359.

[16] Zhou Pu, Liu Zejin, Xu Xiaojun, et al. Beam quality factor for coherently combined fiber laser beams[J]. Optics & Laser Technology, 2009, 41(3): 268-271.

[17] Yan Ping, Wang Xuejiao, Gong Mali, et al. Evaluating the beam quality of double-cladding fiber lasers in applications[J]. Applied Optics, 2016, 55(23): 6145-6150.

[18] Wielandy S. Implications of higher-order mode content in large mode area fibers with good beam quality[J]. Optics Express, 2007, 15(23): 15402-15409.

[19] Tao Rumao, Huang Long, Zhou Pu, et al. Propagation of high-power fiber laser with high-order-mode content[J]. Photonics Research, 2015, 3(4): 192-199.

[20] 冯国英, 周寿桓, 高春清. 激光模场及光束质量表征[M]. 北京: 国防工业出版社, 2016. (Feng Guoying, Zhou Shouhuan, Gao Chunqing. Laser mode field and beam quality characterization. Beijing: National Defense Industry Press, 2016)

[21] Nicholson J W, Yablon A D, Ramachandran S, et al. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers[J]. Optics Express, 2008, 16(10): 11.

[22] 胡丽荔, 冯国英, 董哲良. 基于空间和频谱分辨的光纤模式测量方法[J]. 红外与激光工程, 2015, 44(8): 2517-2522. (Hu Lili, Feng Guoying, Dong Zheliang. Spatially and spectrally resolved fiber mode measurement method. Infrared and Laser Engineering, 2015, 44(8): 2517-2522)

[23] Schimpf D N, Barankov R A, Ramachandran S. Cross-correlated (C2) imaging of fiber and waveguide modes[J]. Optics Express, 2011, 19(14):13008-13019.

[24] Demas J, Ramachandran S. Sub-second mode measurement of fibers using C2 imaging[J]. Optics Express, 2014, 22(19):23043-23056.

[25] Schmidt O A, Schulze C, Flamm D, et al. Real-time determination of laser beam quality by modal decomposition[J]. Optics Express, 2011, 19(7): 6741-6748.

[26] Paurisse M, Lévèque L, Hanna M, et al. Complete measurement of fiber modal content by wavefront analysis[J]. Optics Express, 2012, 20(4): 4074-4084.

[27] Brüning R, Gelszinnis P, Schulze C, et al. Comparative analysis of numerical methods for the mode analysis of laser beams[J]. Applied Optics, 2013, 52(32): 7769-7777.

[28] Flamm D, Naidoo D, Schulze C, et al. Mode analysis with a spatial light modulator as a correlation filter[J]. Optics Letters, 2012, 37(13):2478-2480.

[29] Lü Haibin, Zhou Pu, Wang Xiaolin, et al. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm[J]. Applied Optics, 2013, 52(12): 2905-2908.

[30] Huang Liangjin, Guo Shaofeng, Leng Jinyong, et al. Real-time mode decomposition for few-mode fiber based on numerical method[J]. Optics Express, 2015, 23(4): 4620-4629.

[31] Huang Liangjin, Lü Haibin, Zhou Pu, et al. Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm[J]. Photonics Technology Letters, 2015, 27(21): 2280-2283.

[32] Andermahr N, Theeg T, Fallnich C. Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers[J]. Applied Physics B, 2008, 91(2): 353-357.

[33] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

[34] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.

[35] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letter, 2012, 37(12): 2382-2384.

[36] Jauregui C, Eidam T, Otto H-J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.

[37] Dong Liang. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.

[38] Hu I-Ning, Zhu Cheng, Zhang Chao, et al. Analytical time-dependent theory of thermally-induced modal instabilities in high power fiber amplifiers[C]//Proc of SPIE. 2013: 860109.

[39] Zervas M N. High power ytterbium-doped fiber lasers—fundamentals and applications [J]. Int J Mod Phys B, 2014, 28(12): 1442009.

[40] Russell P S t J, Culverhouse D, Farahi F. Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers [J]. IEEE J Quantum Electron, 1991, 27(3): 836-842.

[41] Russell P St J, Culverhouse D, Farahi F. Experimental observation of FSBS in dual-mode single-core fibre [J]. Electron Lett, 1990, 26(15): 1195-1196.

[42] Kuznetsov M, Vershinin O, Tyrtyshnyy V, et al. Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers [J]. Opt Express, 2014, 22(24): 29714-29725.

[43] 陶汝茂. 高功率窄线宽近衍射极限光纤激光放大器热致模式不稳定研究[D]. 长沙: 国防科学技术大学研究生院, 2015. (Tao Rumao. Study of thermal-induced modal instabilities in high power narrow-linewidth fiber amplifiers with near diffraction-limited beam quality. Changsha: National University of Defense Technology, 2015)

[44] 陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51(2): 1-8. (Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers. Laser & Optoelectronics Progress, 2014, 51(2): 1-8)

[45] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3(3): 86-93.

[46] Jansen F, Stutzki F, Otto H J, et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 2012, 20(4): 3997-4008.

[47] Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation[J]. Optics Express, 2013, 21(13): 15168-15182

[48] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Physics Letter, 2015, 12: 085101.

[49] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.

[50] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers[J]. Laser Physics, 2016, 26: 065103.

[51] 陶汝茂, 王小林, 肖虎, 等. 高功率光纤放大器中模式不稳定阈值功率的理论研究[J]. 光学学报, 2014, 34: 114002. (Tao Rumao, Wang Xiaolin, Xiao Hu, et al. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers. Acta Optica Sinica, 2014, 34: 114002)

[52] Eidam T, Hdrich S, Jansen F, et al. Preferential gain photonic-crystal fiber for mode stabilization at high average powers[J]. Optics Express, 2011, 19(9): 8656-8661.

[53] Engin D, Lu W, Verdun H, et al. High power modal instability measurements of very large mode area (VLMA) step index fibers[C]//Proc of SPIE. 2013: 87330J.

[54] Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Optics Express, 2013, 21(13): 16111-16129.

[55] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]//Proc of SPIE. 2013: 860108.

[56] Laurila M, Jrgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability[J]. Optics Express, 2012, 20(5): 5742-5753.

[57] Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 2013, 21(19): 21847-21856.

[58] Otto H-J, Modsching N, Jauregui C, et al. Impact of photo darkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277.

[59] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 2016, 18: 065501.

[60] Goodno G D, McNaught S, Thielen P, et al. Polarization control with mode stability: US8922877B1[P]. 2014-12-30.

[61] <

    参考文献原文>Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J].Optics Express, 2013, 21(2): 1944-1971.

    Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Optics Express, 2012, 20(22): 24545-24558.

[62] Jauregui C, Limpert J,Tünnermann A. High-power fibre lasers [J]. Nat Photon, 2012, 7: 861-867.

[63] Ballato J, Dragic P. Materials development for next generation optical fiber[J]. Materials, 2014, 7(6): 4411-4430.

[64] Shaw L B, Askins C, Kim W, et al. Cladding pumped single crystal Yb: YAG fiber amplifier[C]//Advanced Solid State Laser, 2015: AM4A.4.

[65] Tao Rumao, Wang Xiaolin, Zhou Pu, et al. Seed power dependence of mode instabilities in high power fiber amplifiers[J]. Journal of Optics, 2017, 19: 065202.

[66] Otto H-J, Jauregui C, Stutzki F, et al. Dependence of mode instabilities on the extracted power of fiber laser systems[C]//Advanced Solid State Laser, 2013: ATu3A.02.

[67] Haarlammert N, Sattler B, Liem A, et al. Optimizing mode instability in low-NA fibers by passive strategies[J]. Optics Letter, 2015, 40(10): 2317-2320.

[68] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 1-6.

[69] Otto H-J, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffraction-limited output power of fiber lasers[C]//Proc of SPIE. 2015: 93441Y.

[70] Brar K, Leuchs M S, Henric J, et al. Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers[C]//Proc of SPIE. 2014: 89611R.

[71] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth[C]//Proc of SPIE. 2015: 972807.

[72] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Optics Express, 2013, 21(3): 2606-2623.

[73] Smith J J, Smith A V. Influence of signal bandwidth on mode instability thresholds of fiber amplifiers[C]//Proc of SPIE. 2015: 93440L.

[74] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17: 045504.

[75] Tao R, Ma P, Wang X, et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers [J]. Laser Phys Lett, 2017, 14: 025002.

[76] Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultra-high brightness pumps[C]//Proc of SPIE. 2015: 972806.

[77] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[C]//Proc of SPIE. 2014: 92550B.

[78] Lei Min, Qi Yunfeng, Liu Chi, et al. Mode controlling study on narrow-linewidth and high power all-fiber amplifier[C]//Proc of SPIE. 2015: 95431L.

[79] 雷敏, 漆云凤, 刘驰, 等. 高功率全光纤放大器的高阶模激发阈值特性研究[J]. 中国激光, 2015, 42: 0605002. (Lei Min, Qi Yunfeng, Liu Chi, et al. High-order modes threshold study on high power all-fiber amplifier. Chinese Journal of Lasers, 2015, 42: 0605002)

[80] Ma Pengfei, Tao Rumao, Su Rongtao, et al. 1.89 kW all-fiberized and polarization-maintained fiber amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.

[81] 陶汝茂, 周朴, 王小林, 等. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究[J]. 物理学报, 2014, 63: 085202. (Tao Rumao, Zhou Pu, Wang Xiaolin, et al. Experimental study on mode instability in high power all-fiber master oscillator power amplifier fiber lasers. Acta Physica Sinica, 2014, 63: 085202)

[82] Tao Rumao, Su Rongtao, Ma Pengfei, et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letter, 2017, 14: 025101.

[83] Robin C, Dajani I, Zeringue C, et al. Gain-tailored SBS suppressing photonic crystal fibers for high power applications[C]//Proc of SPIE. 2012: 82371D.

[84] Liu C H, Chang G, Litchinitser N, et al. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling[C]//Proc CLEO/QELS 2007. CTuBB3.

[85] Kanskar M, Zhang J, McComb T S, et al. Traverse-modal-instability (TMI)-free Yb-doped 35 μm core and 250 μm clad chirally coupled core (3C) fiber MOPA with 475 W output power[C]// Laser Technology for Defense and Security XII. 2016.

[86] Dong L, Saitoh K, Kong F, et al. All-solid photonic bandgap fibers for high power lasers [C]// Proc of SPIE. 2012: 85470J,.

[87] Kong F, Gu G, Hawkins T, et al. ~1 kilowatt ytterbium-doped all-solid photonic bandgap fiber laser[C]//Proc of SPIE. 2017: 1008311.

[88] Filippov V, Ustimchik V, Chamorovskii Yu, et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]//European Conference on Laser and Electro-Optics and the European Quantum Electronics Conference. 2015.

[89] Eznaveh Z S, Lopez-Galmiche G, Antonio-Lopez E, et al. Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers[C]//Proc of SPIE. 2015: 93442G.

[90] Stihler C, Jauregui C, Otto H J, et al. Controlling mode instabilities at 628 W average output power in an Yb-doped rod-type fiber amplifier by active modulation of the pump power [C]// Proc of SPIE. 2017: 100830P.

[91] Liu Wei, Ma Pengfei, Lü Haibin, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 2016, 24(23): 26715-26721.

[92] Xiao Hu, Zhou Pu, Wang Xiaolin, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1088-1090.

[93] Xiao Hu, Zhou Pu, Wang Xiaolin, et al. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier[J]. Laser Physics Letters, 2012, 9(10): 748.

[94] Huang Y, Edgecumbe J, Ding J, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths: 1028~1100 nm [C]//Proc of SPIE. 2014: 89612K.

[95] 于海龙, 王小林, 张汉伟, 等. 300 W线偏振飞秒全光纤啁啾脉冲放大系[J]. 强激光与粒子束, 2016, 28: 050101.(Yu Hailong,Wang Xiaolin,Zhang Hanwei, et al. 300 W linearly polarized femtosecond all-fiber chirped pulse amplification system.High Power Laser and Particle Beams, 2016, 28: 050101)

[96] Bobkov K K, Bubnov M M, Aleshkina S S, et al. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers[J]. Laser Physics Letter, 2017, 14: 015102.

[97] Ward B, Theory and modeling of photodarkeninginduced quasi static degradation in fiber amplifiers[J]. Optics Express, 2016, 24(4): 3488-3501.

[98] 史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44:0201004.(Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers. Chinese Journal of Lasers, 2017, 44:0201004)

[99] Alvarez-Chavez J A, Grudinin A B, Nilsson J, et al. Mode selection in high power cladding pumped fibre lasers with tapered section[C]//Conference on Lasers and Electro-Optics. 1999: 247-248.

[100] Li Libo, Lou Qihong, Zhou Jun, et al. High power single transverse mode operation of a tapered large-mode-area fiber laser[J]. Optics Communications, 2008, 281(4): 655-657.

[101] 张汉伟, 周朴, 王小林, 等. 双包层光纤光学放电现象的建模仿真分析[J]. 光学学报, 2013, 33: 706015. (Zhang Hanwei, Zhou Pu, Wang Xiaolin, et al. Simulation of fiber optical discharge effect of double cladding fiber. Acta Optica Sinica, 2013, 33: 0706015)

[102] Zhang Hanwei, Zhou Pu, Wang Xiaolin, et al. Fiber fuse effect in high-power double-clad fiber laser[C]//Conference on Lasers and Electro-Optics. 2013: WPD_4.

[103] 史尘, 王小林, 粟荣涛, 等. 长拉锥双包层光纤在光纤激光领域的应用研究进展[J]. 激光与光电子学进展, 2015, 52(12): 1-8. (Shi Chen, Wang Xiaolin, Su Rongtao, et al. Progress of study on long tapered double-clad fiber in fiber laser application. Laser & Optoelectronics Progress, 2015, 52(12): 1-8)

[104] <

    参考文献原文>Schermer R T, Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment[J]. IEEE Journal of Quantum Electronics, 2007, 43(10): 11.

    Koplow J P, Kliner D A V, Goldberg L. Single-mode operation of a coiled multimode fiber amplifier[J]. Optics Letters, 2000, 25(7): 442-444.

[105] Marcuse D. Influence of curvature on the losses of doubly clad fibers[J]. Applied Optics, 1982, 21(23): 4208-4213.

[106] Li Mingjun, Chen Xin, Liu Anping, et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. Journal of Lightwave Technology, 2009, 27(15): 3010-3016.

[107] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.

[108] Huang Liangjin, Wang Wenliang, Leng Jinyong, et al. Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier[J]. IEEE Photonics Technology Letters, 2014, 26(1): 33-36.

[109] Xu Jiangming, Liu Wei, Leng Jinyong, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13): 2973-2976.

[110] Walorny M, Abramczyk J, Jacobson N, et al. Mechanical reliability of double clad fibers in typical fiber laser deploy[C]//Proc of SPIE. 2016: 97283A.

[111] Petit V, Tumminelli R P, Minelly J D, et al. Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD[C]//Proc of SPIE. 2016: 97282R.

[112] Kuhn S, Hein S, Hupel C, et al. Towards monolithic single-mode Yb-doped fiber amplifiers with >4 kW average power[C]//Advanced Solid State Laser. 2016: ATu4A.2.

[113] Jain D, Jung Y, Barua P S, et al. Demonstration of ultra-low Na rare-earth doped step index fiber for applications in high power fiber lasers[J]. Optics Express, 2015, 23(6): 7407-7415.

[114] Xu Wenbin, Lin Zhiquan, Wang Meng, et al. 50 μm core diameter Yb3+/Al3+/F- codoped silica fiber with M2<1.1 beam quality[J]. Optics Letters, 2016, 41(3): 504-507.

[115] Hupel C, Kuhn S, Hein S, et al. MCVD based fabrication of low-NA fibers for high power fiber laser application[C]//Advanced Solid State Laser. 2015: AM4A.2.

[116] Beier F, Hupel C, Kuhn S, et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Opt Express, 2017, 25: 14892-14899.

[117] Jain D, Jung Y, Nunez-Velazquez M, et al. Extending single mode performance of all-solid large-mode-area single trench fiber[J]. Optics Express, 2014, 22(25): 31078-31091.

[118] Jain D, Alam S, Codemard C, et al. High power, compact, picosecond MOPA based on single trench fiber with single polarized diffraction-limited output [J]. Optics Letters, 2015, 40(17): 4150-4153.

[119] Sderlund M J, Ponsoda M J J, Tammela S K T , et al. Mode-induced transverse photodarkening loss variations in large-mode-area ytterbium doped silica fibers [J]. Opt Express, 2008, 16(14): 10633-10640.

[120] Marciante J R. Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 30-36.

[121] Marciante J R, Roides R G, Shkunov V V, et al. Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering[J]. Optics Letters, 2010, 35(11): 1828-1830.

[122] Ye C, Koponen J, Kokki T, et al. Confined-doped ytterbium fibers for beam quality improvement: fabrication and performance[C]//SPIE LASE. 2012: 823737.

[123] Fini J M. Bend distortion in large-mode-area amplifier fiber design [C]//Proc of SPIE. 2007: 67810E.

[124] Ma Xiuquan, Liu Chi-Hung, Chang Guoqing, et al. Angular-momentum coupled optical waves in chirally-coupled-core fibers[J]. Optics Express, 2011, 19(27): 26515-26528.

[125] Ma Xiuquan, Zhu Cheng, Hu I-Ning, et al. Single-mode chirally-coupled-core fibers with larger than 50μm diameter cores[J]. Optics Express, 2014, 22(8): 9206-9219.

[126] Dong L, McKay H A, Marcinkevicius A, et al. Extending effective area of fundamental mode in optical fibers[J]. Journal of Lightwave Technology, 2009, 27(11): 1565-1570.

[127] Dong Liang, Peng Xiang, Li Jun. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 2007, 24(8): 1689-1697.

[128] Wong W S, Peng X, McLaughlin J M, et al. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Optics Letters, 2005, 30(21): 2855-2857.

[129] Dong L, McKay H A, Fu L, et al. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding[J]. Optics Express, 2009, 17(11): 8962-8969.

[130] Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J]. Light: Science & Applications, 2012,1: e8.

[131] Stutzki F, Jansen F, Otto H-J, et al. Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems[J]. Optica, 2014, 1(4): 233-242.

[132] Jain D, Baskiotis C, May-Smith T C, et al. Large mode area multi-trench fiber with delocalization of higher order modes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 242-250.

[133] Jain D, Jung Y, Kim J, et al. Robust Single-mode all-solid multi-trench fiber with large effective mode area[J]. Optics Letters, 2014, 39(17): 5200-5203.

[134] Fridman M, Machavariani G, Davidson N, et al. Fiber lasers generating radially and azimuthally polarized light[J]. Applied Physics Letters, 2008, 93:191104.

[135] Zou Lin, Yao Yao, Li Jianlang. High-power, efficient and azimuthally polarized ytterbium-doped fiber laser[J]. Optics Letters, 2015, 40(2):229-232.

[136] Lin D, Daniel J M, Geceviius M, et al. Cladding-pumped ytterbium-doped fiber laser with radially polarized output[J]. Optics Letters, 2014, 39(18):5359-5361.

[137] Lin D, Clarkson W A. Polarization-dependent transverse mode selection in an Yb-doped fiber laser[J]. Optics Letters, 2015, 40(4):498-501.

[138] Liu Tong, Chen Shengping, Qi Xue, et al. High-power transverse-mode-switchable all-fiber picosecond MOPA[J]. Optics Express, 2016, 24(24): 27821-27827.

[139] Tanaka Y, Okida M, Miyamoto K, et al. High power picosecond vortex laser based on a large-mode-area fiber amplifier[J]. Optics Express, 2009, 17(16): 14362-14366.

[140] Koyama M, Hirose T, Okida M, et al. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier[J]. Optics Express, 2011, 19(2):994-999.

[141] Kanazawa S, Kozawa Y, Sato S. High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber[J]. Optics Letters, 2014, 39(10):2857-2859.

[142] Kim D J, Kim J W, Clarkson W A. High-power master-oscillator power-amplifier with optical vortex output[J]. Applied Physics B, 2014, 117(1):459-464.

[143] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes [J].Nat Commun,2013, 4: 2289.

[144] Huang Liangjin, Leng Jinyong, Zhou Pu, et al. Adaptive mode control of a few-mode fiber by real-time mode decomposition [J]. Optics Express, 2015, 23(21): 28082-28090.

[145] Tian Chenghui, Yu Song, Cai Shanyong, et al. Fiber laser for on-demand mode generation in 1550 nm band[J].Photonics Research, 2017,5(3) :256.

[146] Zhou Xuanfeng, Chen Zilun, Wang Zefeng, et al. Monolithic fiber end cap collimator for high power free-space fiber-fiber coupling[J]. Applied Optics, 2016, 55(15):4001-4003.

[147] Zhi Dong, Ma Yanxing, Chen Zilun, et al. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality[J]. Optics Letters, 2016, 41(10): 2217-2220.

[148] Tao Rumao, Si Lei, Ma Yanxing, et al. Optical quality of high-power fiber laser beams propagating through collimating systems[J]. Acta Physica Sinica, 2011, 60: 104208.

周朴. 高平均功率光纤激光技术基础: 模式[J]. 强激光与粒子束, 2018, 30(6): 060201. Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30(6): 060201.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!