Matter and Radiation at Extremes, 2018, 3 (3): 127, Published Online: Oct. 2, 2018  

Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

Author Affiliations
1 The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu, Nishiku, Hamamatsu, Japan
2 Faculty of Science and Engineering, Setsunan University, Neyagawa, 572-8508, Osaka, Japan
3 LULI-CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06: Sorbonne Universites, F-91128, Palaiseau Cedex, France
4 Instituto de Fusion Nuclear, ETSI de Industriales, Universidad Politecnica de Madrid, C/ Jose Gutierrez Abascal, 2, E-28006, Madrid, Spain
5 LULI - CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay, UPMC Univ Paris 06: Sorbonne Universites, F-91128, Palaiseau Cedex, France
6 Department of Physics and Astronomy, University of California at Irvine, Irvine, CA, 92697, USA
Copy Citation Text

K. Mima, J. Fuchs, T. Taguchi, J. Alvarez, J.R. Marques, S.N. Chen, T. Tajima, J.M. Perlado. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas[J]. Matter and Radiation at Extremes, 2018, 3(3): 127.

References

[1] F. Najmabadi, A.R. Raffray, ARIES-IFE Team, S.I. Abdel-Khalik, L. Bromberg, et al., Operational windows for dry-wall and wetted-wall IFE chambers, Fusion Sci. Technol. 46 (2004) 401-416.

[2] M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brownet, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436-439.

[3] T.N. Kato, H. Takabe, Electrostatic and electromagnetic instabilities associated with electrostatic shock: two-dimensional particle-in-cell simulation, Phys. Plasmas 17 (2010) 03211-1-10.

[4] L.O. Silva, M. Marti, J. Davies, R.A. Fonseca, C. Ren, et al., Proton shock acceleration in laser-plasma interaction, Phys. Rev. Lett. 92 (2004) 015002-1-4.

[5] G. Sorasio, M. Marti, R. Fonseca, L.O. Silva, Very high mach-number electrostatic shocks in collision-less plasmas, Phys. Rev. Lett. 96 (2006) 045005-1-4.

[6] E. Baldwin, Shock Wave Blasts Through Galaxy, 2009. Astronomy Now, Posted: 23 April.

[7] T. Amano, M. Hoshino, Electron shock surfing acceleration in multidimensions: two-dimensional particle-in-cell simulation of collisionless perpendicular shock, APJ 690 (2009) 244-251.

[8] H.-C. Wu, T. Tajima, D. Habs, A.W. Chao, J. Meyer-ter-Vehn, Collective deceleration: toward a compact beam dump, Phys. Rev. Spec. Top. Accel. Beams 13 (2010) 101303-1-8.

[9] E.A. Starstev, R.C. Davidson, M. Dorf, Two-stream stability properties of the return-current layer for intense ion beam propagation through background plasma, Phys. Plasmas 16 (2009) 092101-1-8.

[10] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, second ed., Plenum Press, New York, 1984. Chapt. 6.

[11] A. Bred, M.C. Firpo, C. Deutsch, Characterization of the initial filamentation of a relativistic electron beam passing through a plasma, Phys. Rev. Lett. 94 (2005) 115002-1-4.

[12] A. Frank, A. Bla_zevi_c, P.L. Grande, K. Harres, T. He ling, et al., Energy loss of argon in a laser-generated carbon plasma, Phys. Rev. E 81 (2010) 026401-1-6.

[13] S.P. Hatchett, C.G. Brown, T.E. Cowan, E.A. Henry, J.S. Johnson, Electron, proton, and ion beam from the relativistic interaction of petawatt laser pulses with solid targets, Phys. Plasmas 7 (2000) 2076-2082.

[14] E.L. Clark, K. Krushelnick, J.R. Davies, M. Zepf, M. Tatarakis, et al., Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids, Phys. Rev. Lett. 84 (2000) 670-673.

[15] R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, et al., Intense high-energy proton beams from petawatt-laser irradiation of solids, Phys. Rev. Lett. 85 (2000) 2945-2948.

[16] J. Fuchs, T.E. Cowan, P. Audebert, H. Ruhl, L. Gremillet, et al., Spatial uniformity of laser-accelerated ultra high current MeV electron propagation in metals and insulators, Phys. Rev. Lett. 91 (2003) 255002-1-4.

[17] T.E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, et al., Ultralow emittance, multi-MeV proton beams from a laser virtual cathode plasma accelerator, Phys. Rev. Lett. 92 (2004), 204801-1-4.

[18] P. Mora, Thin-foil expansion into a vacuum, Phys. Rev. E 72 (2005) 056401-1-5.

[19] M. Borghesi, J. Fuchs, S.V. Bulanov, A.J. Mackinnon, P.K. Patel, et al., Fast ion generation by high-intensity laser irradiation of solid targets and applications, Fus. Sci. Technol. 49 (2006) 412-439.

[20] M. Roth, A. Blazevic, M. Geissel, T. Schlegel, T.E. Cowan, et al., Energetic ions generated by laser pulses: a detailed study on target properties, Phys Rev ST-AB 5 (2002) 061301-1-8.

[21] S. Ter-Avetisyan,M.Borgheshi,M. Schnurer, P.V.Nickles,W. Sandner, et al., Characterization and control of ion sources from ultra-short high-intensity laser-foil interaction, Plasma Phys. Control. Fusion 51 (2009) 124046-1-8.

[22] M. Borghesi, A.J. Mackinnon, D.H. Campbell, D.G. Hicks, S. Ker, et al., Multi-MeV proton source investigations in ultraintense laser-foil interactions, Phys. Rev. Lett. 92 (2004) 055003-1-4.

[23] T. Taguchi, T.M. Antonsen Jr., K. Mima, Study of hot electron beam transport in high density plasma using 3D hybrid-Darwin code, Comput. Phys. Commun. 164 (2004) 269-278.

[24] A. Flacco, F. Sylla, M. Veltcheva, M. Carri_e, et al., Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration, Phys. Rev. E 81 (2010) 036405.

[25] S. Fourmaux, S. Buffechoux, B. Albertazzi, D. Capelli, A. Levy, et al., Investigation of laser-driven proton acceleration using ultra-short, ultraintense laser pulses, Phys. Plasmas 20 (2013) 013110.

[26] A. Kemp, J. Fuchs, Y. Sentoku, V. Sotnikov, M. Bakeman, et al., Emittance growth mechanisms for laser-accelerated proton beams, Phys. Rev. E 75 (2007) 056401.

[27] S. Ichimaru, Basic Principles of Plasma Physics, 1973. Reading, MA.

[28] B. Hao, W.J. Ding, Z.M. Sheng, C. Ren, J. Zhang, Plasma thermal effect on the relativistic current-filamentation and two-stream instabilities in a hot-beam warm-plasma system, Phys. Rev. E 80 (2009) 066402-1-5. K.M. Watson, S.A. Bludman, M.N. Rosenbluth, Statistical mechanics of relativistic streams I, Phys. Fluids 3, 741-747(1960).

[29] N.V. Klassen, L. van der Zwan, J. Cygler, GafChromic MD-55: investigated as a precision dosimeter, Med. Phys. 24 (1997) 1924-1934.

[30] B. Wattellier, J. Fuchs, J.P. Zou, K. Abdeli, H. P_epin, et al., Repetition rate increase and diffraction-limited focal spots for a nonthermalequilibrium 100-TW Nd:glass laser chain by use of adaptive optics, Opt. Lett. 29 (2004) 2494-2496.

[31] R.B. Miller, On electron beam propagation in neutral gases, in: An Introduction to the Physics of Intense Charged Particle Beams, 1982. Plenum, New York.

[32] Y.A. Omelchenko, V.I. Sotnikov, V.D. Shapiro, V.I. Shevchenko, Strong Langmuir turbulence and beam plasma discharge in the ionospheric plasma, Planet. Space Sci. 40 (1992) 535-540.

[33] L. Lancia, M. Grech, S. Weber, J.-R. Marqu_es, L. Romagnani, et al., Anomalous self-generated electrostatic fields in nanosecond laser-plasma interaction, Phys. Plasmas 18 (2011) 030705.

[34] J. Alvarez, D. Garoz, R.G. Arrabal, A. Ribera, M. Perlado, The role of spatial and temporal radiation deposition in inertial fusion chambers: the case of HiPER, Nucl. Fusion 51 (2011) 053019-1-5.

K. Mima, J. Fuchs, T. Taguchi, J. Alvarez, J.R. Marques, S.N. Chen, T. Tajima, J.M. Perlado. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas[J]. Matter and Radiation at Extremes, 2018, 3(3): 127.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!