激光与光电子学进展, 2018, 55 (6): 060605, 网络出版: 2018-09-11   

基于再生低反射率光纤光栅和饱和吸收体的高温光纤激光传感研究 下载: 1165次

High-Temperature Fiber Laser Sensing Based on Low-Reflectivity Regenerated Fiber Bragg Grating and Saturable Absorber
赵小丽 1张钰民 1杨润涛 1骆飞 1,2,3祝连庆 1,2,1; 2; 3*;
作者单位
1 北京信息科技大学光电信息与仪器北京市工程研究中心, 北京 100016
2 现代测控技术教育部重点实验室, 北京 100192
3 北京信息科技大学光电测试技术北京市重点实验室, 北京 100192
引用该论文

赵小丽, 张钰民, 杨润涛, 骆飞, 祝连庆. 基于再生低反射率光纤光栅和饱和吸收体的高温光纤激光传感研究[J]. 激光与光电子学进展, 2018, 55(6): 060605.

Xiaoli Zhao, Yumin Zhang, Runtao Yang, Fei Luo, Lianqing Zhu. High-Temperature Fiber Laser Sensing Based on Low-Reflectivity Regenerated Fiber Bragg Grating and Saturable Absorber[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060605.

参考文献

[1] 王洁玉, 童峥嵘, 曹晔, 等. 光纤光栅激光传感器的研究现状及其应用[J]. 光通信技术, 2012, 36(4): 19-21.

    Wang J Y, Tong Z R, Cao Y, et al. The current research and application for optical fiber grating laser sensor[J]. Optical Communication Technology, 2012, 36(4): 19-21.

[2] 夏巨江, 李芳. 飞秒激光耐高温光纤光栅传感器的制备[J]. 武汉工程大学学报, 2016, 38(2): 200-203.

    Xia J J, Li F. Fabrication of high-temperature-resistant fiber grating sensor by femtosecond laser[J]. Journal of Wuhan Institute of Technology, 2016, 38(2): 200-203.

[3] 聂铭, 张东生, 吴梦绮, 等. 耐高温再生光纤光栅的生长规律[J]. 激光与光电子学进展, 2017, 54(5): 050601.

    Nie M, Zhang D S, Wu M Q, et al. Growth law of high temperature resistance regenerated fiber grating[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050601.

[4] 范利净, 李永倩, 姚国珍. 光纤光栅激光传感器与其研究进展[J]. 光通信技术, 2017, 41(1): 37-40.

    Fan L J, Li Y Q, Yao G Z. Optical fiber grating laser sensor and its research progress[J]. Optical Communication Technology, 2017, 41(1): 37-40.

[5] Fokine M. Formation of thermally stable chemical composition gratings in optical fibers[J]. Journal of the Optical Society of America B, 2002, 19(8): 1759-1765.

[6] Gunawardena D S. Mat-Sharif K A, Lai M, et al. Thermal activation of regenerated grating in hydrogenated gallosilicate fiber[J]. IEEE Sensors Journal, 2016, 16(6): 1659-1664.

[7] Tu Y, Ye L, Zhou S P, et al. An improved metal-packaged strain sensor based on a regenerated fiber Bragg grating in hydrogen-loaded boron-germanium Co-doped photosensitive fiber for high-temperature applications[J]. Sensors, 2017, 17(3): 431.

[8] 裴丽, 翁思俊, 吴良英, 等. 光纤激光传感系统的研究进展[J]. 中国激光, 2016, 43(7): 0700001.

    Pei L, Weng S J, Wu L Y, et al. Progress in optical fiber laser sensing system[J]. Chinese Journal of Lasers, 2016, 43(7): 0700001.

[9] ChenR, YanA, LiM, et al. High-temperature-resistant distributed Bragg reflector fiber laser based on thermally regenerated gratings[C]∥CLEO: Science and Innovations.2013: 14393549.

[10] Rodriguez-Cobo L. Lopez-Higuera J M. SLM fiber laser stabilized at high temperature[J]. IEEE Photonics Technology Letters, 2016, 28(6): 693-696.

[11] 杨樟成, 徐汉锋, 董新永. 高温光纤光栅的研究进展[J]. 激光与光电子学进展, 2012, 49(5): 050003.

    Yang Z C, Xu H F, Dong X Y. Research development of high-temperature resistant fiber gratings[J]. Laser & Optoelectronics Progress, 2012, 49(5): 050003.

[12] 张荫民, 祝连庆. 低阈值光纤激光器稳频特性研究[J]. 激光与红外, 2014, 44(8): 884-887.

    Zhang Y M, Zhu L Q. Study on frequency stabilization of low threshold fiber laser[J]. Laser and Infrared, 2014, 44(8): 884-887.

[13] 杨润涛, 祝连庆, 张钰民, 等. 基于可饱和吸收稳频技术的光纤激光应变传感特性研究[J]. 纳米技术与精密工程, 2016, 14(3): 201-205.

    Yang R T, Zhu L Q, Zhang Y M, et al. Strain sensing characteristics of fiber laser based on saturable absorption frequency stabilization technology[J]. Nanotechnology and Precision Engineering, 2016, 14(3): 201-205.

[14] He X, Fang X, Liao C, et al. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity[J]. Optics Express, 2009, 17(24): 21773-21781.

[15] 焦明星, 邢俊红, 同聪维, 等. 双波长单纵模掺铒光纤环形激光器设计及实验研究[J]. 中国激光, 2013, 40(6): 0602013.

    Jiao M X, Xing J H, Tong C W, et al. Design and experimental study of two-wavelength single-longitudinal-mode Erbium-doped fiber ring lasers[J]. Chinese Journal of Lasers, 2013, 40(6): 0602013.

[16] Zhang K, Kang J U. C-band wavelength-swept single-longitudinal mode erbium-doped fiber ring laser[J]. Optics Express, 2008, 16(18): 14173-14179.

[17] 王涛. 高温再生光纤光栅的制作与性能研究[D]. 北京: 北京交通大学, 2013.

    WangT. Research on fabrication and property of high temperature regenerated grating[D]. Beijing: Beijing Jiaotong University, 2013.

[18] Zhang J, Sun H, Rong Q Z. et al. High-temperature sensor using a Fabry-Perot interferometer based on solid-core photonic crystal fiber[J]. Chinese Optics Letters, 2012, 10(7): 070607.

[19] Chen R, Yan A, Li M, et al. Regenerated distributed Bragg reflector fiber lasers for high-temperature operation[J]. Optics Letters, 2013, 38(14): 2490-2492.

[20] Yang H Z, Qiao X G, Das S, et al. Thermal regenerated grating operation at temperatures up to 1400 ℃ using new class of multimaterial glass-based photosensitive fiber[J]. Optics Letters, 2014, 39(22): 6438-6441.

[21] Alqarni S A, Bernier M, Smelser C W. Annealing of high-temperature stable hydrogen loaded fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2016, 28(9): 939-942.

[22] RichterA. Modeling and design of DBR fiber lasers for sensor applications[C].SPIE, 2017, 10098: 100980W.

[23] Tsuda H. Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser[J]. Optics Letters, 2010, 35(14): 2349-2351.

[24] BarreraD, FinazziV, VillatoroJ, et al. Performance of a high-temperature sensor based on regenerated fiber Bragg gratings[C]. SPIE, 2011, 7753: 775381.

[25] Yang X X, Zhan L, Shen Q S, et al. High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber[J]. IEEE Photonics Technology Letters, 2008, 20(11): 879-881.

[26] Canning J, Cook K, Shao L Y. Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre[J]. Optical Materials Express, 2012, 2(12): 1733-1742.

[27] Foster S, Cranch G, Harrison J, et al. Distributed feedback fiber laser strain sensor technology[J]. Journal of Lightwave Technology, 2017, 35(16): 3514-3530.

[28] Khaleel W A. Aljanabi A H M. High-sensitivity sucrose erbium-doped fiber ring laser sensor[J]. Optical Engineering, 2017, 56(2): 026116.

[29] 李芳, 何俊, 徐团伟, 等. 光纤激光传感技术及其应用[J]. 红外与激光工程, 2009, 38(6): 1025-1032.

    Li F, He J, Xu T W, et al. Fiber laser sensing technology and its applications[J]. Infrared and Laser Engineering, 2009, 38(6): 1025-1032.

[30] 薛渊泽, 王学锋, 罗明明, 等. 再生光纤布拉格光栅的研究进展[J]. 激光与光电子学进展, 2018, 55(2): 020007.

    Xue Y Z, Wang X F, Luo M M, et al. Review of regenerated fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020007.

[31] Guan B O, Zhang Y, Wang H J, et al. High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber[J]. Optics Express, 2008, 16(5): 2958-2964.

[32] 杜勇, 司金海, 陈涛, 等. 准分布式光纤布拉格光栅高温传感器[J]. 激光与光电子学进展, 2016, 53(10): 100606.

    Du Y, Si J H, Chen T, et al. Quasi-distributed high temperature sensor based on fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100606.

[33] 詹亚歌, 向世清, 何红, 等. 光纤光栅高温传感器的研究[J]. 中国激光, 2005, 32(9): 1235-1238.

    Zhan Y G, Xiang S Q, He H, et al. Study on high temperature optica fiber grating sensor[J]. Chinese Journal of Lasers, 2005, 32(9): 1235-1238.

赵小丽, 张钰民, 杨润涛, 骆飞, 祝连庆. 基于再生低反射率光纤光栅和饱和吸收体的高温光纤激光传感研究[J]. 激光与光电子学进展, 2018, 55(6): 060605. Xiaoli Zhao, Yumin Zhang, Runtao Yang, Fei Luo, Lianqing Zhu. High-Temperature Fiber Laser Sensing Based on Low-Reflectivity Regenerated Fiber Bragg Grating and Saturable Absorber[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060605.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!