发光学报, 2020, 41 (9): 1045, 网络出版: 2020-11-02  

基于稀土发光纳米材料的时间分辨成像

Time-resolved Imaging Using Lanthanide-doped Nanomaterials
作者单位
哈尔滨工业大学 化工与化学学院, 黑龙江 哈尔滨 150001
引用该论文

王鑫, 韩晓军, 陈冠英. 基于稀土发光纳米材料的时间分辨成像[J]. 发光学报, 2020, 41(9): 1045.

WANG Xin, HAN Xiao-jun, CHEN Guan-ying. Time-resolved Imaging Using Lanthanide-doped Nanomaterials[J]. Chinese Journal of Luminescence, 2020, 41(9): 1045.

参考文献

[1] HONG G S,ANTARIS A L,DAI H J. Near-infrared fluorophores for biomedical imaging [J]. Nat. Biomed. Eng., 2017,1(1):0010.

[2] SMITH B R,GAMBHIR S S. Nanomaterials for in vivo imaging [J]. Chem. Rev., 2017,117(3):901-986.

[3] LIU L,WANG S F,ZHAO B Z,et al.. Er3+ sensitized 1 530 nm to 1 180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing [J]. Angew. Chem. Int. Ed. Engl., 2018,57(25):7518-7522.

[4] CHEN G Y,GREN H,OHULCHANSKYY T Y,et al.. Light upconverting core-shell nanostructures:nanophotonic control for emerging applications [J]. Chem. Soc. Rev., 2015,44(6):1680-1713.

[5] NACZYNSKI D J,TAN M C,ZEVON M,et al.. Rare-earth-doped biological composites as in vivo shortwave infrared reporters [J]. Nat. Commun., 2013,4:2199-1-21.

[6] HINES M A,SCHOLES G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission:observation of post-synthesis self-narrowing of the particle size distribution [J]. Adv. Mater., 2003,15(21):1844-1849.

[7] FRANKE D,HARRIS D K,CHEN O,et al.. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared [J]. Nat. Commun., 2016,7:12749-1-9.

[8] WANG X,YAKOVLIEV A,OHULCHANSKYY T Y,et al.. Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging [J]. Adv. Opt. Mater., 2018,6(20):1800690-1-7.

[9] LIU B,LI C X,YANG P P,et al.. 808-nm-light-excited lanthanide-doped nanoparticles:rational design,luminescence control and theranostic applications [J]. Adv. Mater., 2017,29(18):1605434-1-24.

[10] YANG B,CHEN J S,YANG S Q,et al.. Lead-free silver-bismuth halide double perovskite nanocrystals [J]. Angew. Chem. Int. Ed. Engl., 2018,57(19):5359-5363.

[11] HONG G S,DIAO S,ANTARIS A L,et al.. Carbon nanomaterials for biological imaging and nanomedicinal therapy [J]. Chem. Rev., 2015,115(19):10816-10906.

[12] ANTARIS A L,CHEN H,CHENG K,et al.. A small-molecule dye for NIR-Ⅱ imaging [J]. Nat. Mater., 2016,15(2):235-242.

[13] TAO Z M,HONG G S,SHINJI C,et al.. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1 000 nm [J]. Angew. Chem. Int. Ed. Engl., 2013,52(49):13002-13006.

[14] ZEBIBULA A,ALIFU N,XIA L Q,et al.. Ultrastable and biocompatible NIR-Ⅱ quantum dots for functional bioimaging [J]. Adv. Funct. Mater., 2018,28(9):1703451.

[15] CAO C,XUE M,ZHU X J,et al.. Energy transfer highway in Nd3+-sensitized nanoparticles for efficient near-infrared bioimaging [J]. ACS Appl. Mater. Interfaces, 2017,9(22):18540-18548.

[16] MA Q Q,WANG J,LI Z H,et al.. Recent progress in time-resolved biosensing and bioimaging based on lanthanide-doped nanoparticles [J]. Small, 2019,15(32):1804969-1-22.

[17] WANG J,MA Q Q,LIU H Y,et al.. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition [J]. Anal. Chem., 2017,89(23):12764-12770.

[18] CHEN T,HONG R,MAGDA D,et al.. Time gated luminescence imaging of immunolabeled human tissues [J]. Anal. Chem., 2017,89(23):12713-12719.

[19] ZHOU L,FAN Y,WANG R,et al.. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection [J]. Angew. Chem. Int. Ed. Engl., 2018,57(39):12824-12829.

[20] FAN Y,WANG P Y,LU Y Q,et al.. Lifetime-engineered NIR-Ⅱ nanoparticles unlock multiplexed in vivo imaging [J]. Nat. Nanotechnol., 2018,13(10):941-946.

[21] DEL ROSAL B,ORTGIES D H,FERNNDEZ N,et al.. Overcoming autofluorescence:long-lifetime infrared nanoparticles for time-gated in vivo imaging [J]. Adv. Mater., 2016,28(46):10188-10193.

[22] JOO J,LIU X Y,KOTAMRAJU V R,et al.. Gated luminescence imaging of silicon nanoparticles [J]. ACS Nano, 2015,9(6):6233-6241.

[23] ZHAO M Y,LI B H,WU Y F,et al.. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-Ⅱ luminescence-lifetime in situ imaging of hepatocellular carcinoma [J]. Adv. Mater., 2020,32(28)∶2001172.

[24] LI H,TAN M L,WANG X,et al.. Temporal multiplexed in vivo upconversion imaging [J]. J. Am. Chem. Soc., 2020,142(4)∶2023-2030.

[25] FAN Y,ZHANG F. A new generation of NIR-Ⅱ probes:lanthanide-based nanocrystals for bioimaging and biosensing [J]. Adv. Opt. Mater., 2019,7(7):1801417.

[26] TAN M L,DEL ROSAL B,ZHANG Y Q,et al.. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window [J]. Nanoscale, 2018,10(37):17771-17780.

[27] ORTGIES D H,TAN M L,XIMENDES E C,et al.. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging [J]. ACS Nano, 2018,12(5):4362-4368.

[28] GARGAS D J,CHAN E M,OSTROWSKI A D,et al.. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging [J]. Nat. Nanotechnol., 2014,9(4):300-305.

[29] LU Y Q,LU J,ZHAO J B,et al.. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays [J]. Nat. Commun., 2014,5:3741.

[30] FISCHER S,BRONSTEIN N D,SWABECK J K,et al.. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals [J]. Nano Lett., 2016,16(11):7241-7247.

[31] LU Y Q,ZHAO J B,ZHANG R,et al.. Tunable lifetime multiplexing using luminescent nanocrystals [J]. Nat. Photonics,2014,8(1):32-36.

[32] ZHAO J B,LU Z D,YIN Y D,et al.. Upconversion luminescence with tunable lifetime in NaYF4∶Yb,Er nanocrystals:role of nanocrystal size [J]. Nanoscale, 2013,5(3):944-952.

[33] TU D T,LIU L Q,JU Q,et al.. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals [J]. Angew. Chem. Int. Ed. Engl., 2011,50(28):6306-6310.

[34] SHAO W,CHEN G Y,KUZMIN A,et al.. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window [J]. J. Am. Chem. Soc., 2016,138(50):16192-16195.

[35] SONG B,YE Z Q,YANG Y J,et al.. Background-free in-vivo imaging of vitamin C using time-gateable responsive probe [J]. Sci. Rep., 2015,5:14194-1-10.

[36] ZHENG X L,ZHU X J,LU Y Q,et al.. High-contrast visualization of upconversion luminescence in mice using time-gating approach [J]. Anal. Chem., 2016,88(7):3449-3454.

[37] GU Y Y,GUO Z Y,YUAN W,et al.. High-sensitivity imaging of time-domain near-infrared light transducer [J]. Nat. Photonics, 2019,13(8):525-531.

[38] CHENG S M,LIU Q Y,ZHOU X B,et al.. Reversible ratiometric probe combined with the time-gated method for accurate in vivo gastrointestinal pH sensing [J]. ACS Appl. Mater. Interfaces, 2020,12(23):25557-25564.

[39] QIU X C,ZHOU Q W,ZHU X J,et al.. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique [J]. Nat. Commun., 2020,11(1):4.

[40] BRENNECKE B,WANG Q H,ZHANG Q Y,et al.. An activatable lanthanide luminescent probe for time-gated detection of nitroreductase in live bacteria [J]. Angew. Chem. Int. Ed. Engl., 2020,59(22):8512-8516.

[41] DAI Z C,TIAN L,SONG B,et al.. Development of a novel lysosome-targetable time-gated luminescence probe for ratiometric and luminescence lifetime detection of nitric oxide in vivo [J]. Chem. Sci., 2017,8(3):1969-1976.

[42] MASSEY M,ANCONA M G,MEDINTZ I L,et al.. Time-gated DNA photonic wires with Frster resonance energy transfer cascades initiated by a luminescent terbium donor [J]. ACS Photonics, 2015,2(5):639-652.

[43] VUOJOLA J,SYRJNP M,LAMMINMKI U,et al.. Genetically encoded protease substrate based on lanthanide-binding peptide for time-gated fluorescence detection [J]. Anal. Chem., 2013,85(3):1367-1373.

[44] KONG M Y,GU Y Y,LIU Y L,et al.. Luminescence lifetime-based in vivo detection with responsive rare earth-dye nanocomposite [J]. Small, 2019,15(46):1904487.

[45] NING Y Y,CHENG S M,WANG J X,et al.. Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe [J]. Chem. Sci., 2019,10(15):4227-4235.

[46] ZHENG K Z,LOH K Y,WANG Y,et al.. Recent advances in upconversion nanocrystals:expanding the kaleidoscopic toolbox for emerging applications [J]. Nano Today, 2019,29:100797.

王鑫, 韩晓军, 陈冠英. 基于稀土发光纳米材料的时间分辨成像[J]. 发光学报, 2020, 41(9): 1045. WANG Xin, HAN Xiao-jun, CHEN Guan-ying. Time-resolved Imaging Using Lanthanide-doped Nanomaterials[J]. Chinese Journal of Luminescence, 2020, 41(9): 1045.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!