激光与光电子学进展, 2018, 55 (4): 040001, 网络出版: 2018-09-11   

光纤飞秒激光抽运的非线性光学频率变换研究进展 下载: 2618次封面文章

Research Progress of Nonlinear Frequency Conversion Technology Based on Fiber Femtosecond Lasers
作者单位
天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072
引用该论文

赵君, 胡明列, 范锦涛, 刘博文, 宋有建, 柴路, 王清月. 光纤飞秒激光抽运的非线性光学频率变换研究进展[J]. 激光与光电子学进展, 2018, 55(4): 040001.

Jun Zhao, Minglie Hu, Jintao Fan, Bowen Liu, Youjian Song, Lu Chai, Qingyue Wang. Research Progress of Nonlinear Frequency Conversion Technology Based on Fiber Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040001.

参考文献

[1] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 1999, 82(20): 4142-4145.

[2] 张志刚. 飞秒激光脉冲技术与应用[M]. 北京: 科学出版社, 2005.

    Zhang ZG. Femtosecond laser pulse technology and application[M]. Beijing: Science Press, 2005.

[3] Ruebel F, Haag P. L'huillier J A. Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation[J]. Applied Physics Letters, 2008, 92(1): 011122.

[4] Danielius R, Piskarskas A, Stabinis A, et al. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses[J]. Journal of the Optical Society of America B, 1993, 10(11): 2222-2232.

[5] Cerullo G, de Silvestri S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments, 2003, 74(1): 1-18.

[6] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119.

[7] Maker P D, Terhune R W, Nissenoff M, et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 1962, 8(1): 21-22.

[8] Armstrong J A, Bloembergen N, Ducuing J, et al. Interaction between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.

[9] Dubietis A, Butkus R, Piskarskas A. Trends in chirped pulse optical parametric amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 163-172.

[10] Petrov V, Rotermund F, Noack F, et al. Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals[J]. Journal of Optics A: Pure and Applied Optics, 2001, 3(3): 1-19.

[11] Fermann M E, Hartl I. Ultrafast fiber laser technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 191-206.

[12] 石顺祥, 陈国夫, 赵卫, 等. 非线性光学[M]. 西安: 西安电子科技大学出版社, 2003.

    Shi SX, Chen GF, ZhaoW, et al.Nonlinear optics[M]. Xi'an: Xidian University Press, 2003.

[13] Fox AM. Optical properties of solids[M]. Oxford: Oxford University Press, 2001.

[14] Kumar S C, Samanta G K, Devi K, et al. Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti∶sapphire laser[J]. Applied Optics, 2012, 51(1): 15-20.

[15] Limpert J, Roser F, Schreiber T, et al. High-power ultrafast fiber laser systems[J]. Selected Topics in Quantum Electronics, 2006, 12(2): 233-244.

[16] 王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57-66.

    Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fiber[J]. Chinese Journal of Lasers, 2006, 33(1): 57-66.

[17] 柴路, 胡明列, 方晓惠, 等. 光子晶体光纤飞秒激光技术研究进展[J]. 中国激光, 2013, 40(1): 0101001.

    Chai L, Hu M L, Fang X H, et al. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 0101001.

[18] Huang L L, Hu M L, Fang X H, et al. Generation of 110-W sub-100-fs pulses at 100 MHz by nonlinear amplification based on multicore photonic crystal fiber[J]. IEEE Photonics Journal, 2016, 8(3): 7101307.

[19] Ebrahimzadeh M. Mid-infrared ultrafast and continuous-wave optical parametric oscillators, solid-state mid-infrared laser sources[J]. Springer Berlin Heidelberg, 2003, 89: 184-224.

[20] Giordmaine J A, Miller R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976.

[21] Edelstein D C, Wachman E S, Tang C L. Broadly tunable high repetition rate femtosecond optical parametric oscillator[J]. Applied Physics Letters, 1989, 54(18): 1728-1730.

[22] Lin X, Feehan J S, Li S, et al. Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality[J]. Applied Physics B, 2014, 117(4): 987-993.

[23] Cao J J, Shen D Y, Zheng Y L, et al. Femtosecond OPO based on MgO∶PPLN synchronously pumped by a 532 nm fiber laser[J]. Laser Physics, 2017, 27(5): 055402.

[24] Zhang B G, Yao J Q, Lu Y, et al. High-average-power nanosecond quasi-phase-matched single-pass optical parametric generator in periodically poled lithium niobate[J]. Chinese Physics Letters, 2005, 22(7): 1691-1693.

[25] Xu Z Y, Liang X Y, Li J, et al. Violet to infrared multiwavelength generation in periodically poled lithium niobate pumped by a Q-switched Nd∶YVO4 laser[J]. Chinese Physics Letters, 2002, 19(6): 801-803.

[26] Burra K C, Tang C L, Arbore M A, et al. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate[J]. Applied Physics Letters, 1997, 70(25): 3341-3343.

[27] O'Connor M V. Watson M A, Shepherd D P, et al. Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser[J]. Optics Letters, 2002, 27(12): 1052-1054.

[28] Gu C L, Hu M L, Zhang L M, et al. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator[J]. Optics Letters, 2013, 38(11): 1820-1822.

[29] Gu C L, Hu M L, Fan J T, et al. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator[J]. Optics Letters, 2015, 23(5): 6181-6186.

[30] 范锦涛, 胡明列, 顾澄琳, 等. 基于LBO的高功率飞秒绿光抽运的光学参量振荡器[J]. 中国激光, 2014, 41(9): 0902009.

    Fan J T, Hu M L, Gu C L, et al. High power femtosecond green-pumped optical parametric oscillator based on lithium triborate[J]. Chinese Journal of Lasers, 2014, 41(9): 0902009.

[31] Kafka J D, Watts M L, Pieterse J W, et al. Synchronously pumped optical parametric oscillators with LiBO3[J]. Journal of the Optical Society of America B, 1995, 12(11): 2147-2157.

[32] Cleff C, Epping J, Gross P, et al. Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy[J]. Applied Physics B, 2011, 103(4): 795-800.

[33] Fan J T, Gu C L, Wang C Y, et al. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator[J]. Optics Express, 2016, 24(12): 13250-13257.

[34] Sun J, Gale B J, Reid D T. Dual-color operation of a femtosecond optical parametric oscillator exhibiting stable relative carrier-envelope phase-slip frequencies[J]. Optics Letters, 2006, 31(13): 2021-2023.

[35] Sun J, Gale B J, Reid D T. Coherent synthesis using carrier-envelope phase-controlled pulses from a dual-color femtosecond optical parametric oscillator[J]. Optics Letters, 2007, 32(11): 1396-1398.

[36] Hegenbarth R, Steinmann A, Sarkisov S, et al. Milliwatt-level mid-infrared(10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator[J]. Optics Letters, 2012, 37(17): 3513-3515.

[37] Ruffing B, Nebel A, Wallenstein R. High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range[J]. Applied Physics B, 2001, 72(2): 137-149.

[38] Schröder T, Boller K J, Fix A, et al. Spectral properties and numerical modelling of a critically phase-matched nanosecond LiB3O5 optical parametric oscillator[J]. Applied Physics B, 1994, 58(5): 425-438.

[39] Samanta G K, Ebrahim-Zadeh M. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator[J]. Optics Letters, 2011, 36(16): 3033-3035.

[40] Gu C L, Hu M L, Fan J T, et al. High-power, dual-wavelength femtosecond LiB3O5 optical parametric oscillator pumped by fiber laser[J]. Optics Letters, 2014, 39(13): 3896-3899.

[41] 冯孙奇, 俞大鹏, 赵清, 等. 半导体纳米线--宏观牛顿世界与微观量子世界的理想桥梁[J]. 中国科学: 物理学力学天文学, 2013, 43(11): 1470-1510.

    Feng S Q, Yu D P, Zhao Q, et al. Synthesis, physical properties and application of semiconductor nanowires[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2013, 43(11): 1470-1510.

[42] Zhang C, Zhang F, Xia T, et al. Low-threshold two-photon pumped ZnO nanowire lasers[J]. Optics Express, 2009, 17(10): 7893-7900.

[43] Johnson J C, Yan H, Yang P, et al. Optical cavity effects in ZnO nanowire lasers and waveguides[J]. The Journal of Physical Chemistry B, 2003, 107(34): 8816-8828.

[44] Wang F, Reece P J, Paiman S, et al. Nonlinear optical processes in optically trapped InP nanowires[J]. Nano Letters, 2001, 11(10): 4149-4153.

[45] Prasanth R, van Vugt L K, Vanmaekelbergh D A M, et al. . Resonance enhancement of optical second harmonic generation in a ZnO nanowire[J]. Applied Physics Letters, 2006, 88(18): 181501.

[46] Johnson J C, Choi H J, Knutsen K P, et al. Single gallium nitride nanowire lasers[J]. Nature Materials, 2002, 1(2): 106-110.

[47] Liu R B, Zou B S. Lasing behavior from the condensation of polaronic excitons in a ZnO nanowire[J]. Chinese Physics B, 2011, 20(4): 047104.

[48] Johnson J C, Yan H, Schaller R D, et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires[J]. Nano Letters, 2002, 2(4): 279-283.

[49] Nakayama Y, Pauzauskie P J, Radenovic A, et al. Tunable nanowire nonlinear optical probe[J]. Nature, 2007, 447(7148): 1098-1101.

[50] Zhang Y, Zhou H, Liu S W, et al. Second harmonic whispering gallery modes in ZnO nanotetrapod[J]. Nano Letters, 2009, 9(5): 2109-2112.

[51] Chen R, Crankshaw S, Tran T, et al. Second-harmonic generation from a single wurtzite GaAs nanoneedle[J]. Applied Physics Letters, 2010, 96(5): 051110.

[52] He H, Zhang X Q, Yan X, et al. Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources[J]. Applied Physics Letters, 2013, 103(14): 143110.

[53] Zhang X Q, He H, Fan J T, et al. Sum frequency generation in pure zinc-blende GaAs nanowires[J]. Optics Express, 2013, 21(23): 28432-28437.

[54] Apolonski A, Povazay B, Unterhuber A, et al. The spectral shaping the supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. Journal of the Optical Society of America B, 2002, 19(9): 2165-2170.

[55] Ranka J K, Windeler R S, Stentz A J. Optical properties of high-delta air-silica microstructure optical fibers[J]. Optics Letters, 2000, 25(11): 796-798.

[56] Fang X H, Hu M L, Liu B W, et al. An all-photonic-crystal-fiber wavelength-tunable source of high-energy sub-100 fs pulses[J]. Optics Communications, 2013, 289: 123-126.

[57] 黄莉莉. 通过脉冲动力学优化提升光子晶体光纤飞秒激光性能的研究[D]. 天津: 天津大学, 2016: 73- 77.

    Huang LL. Investigation on optimization of dynamic evolution in a femtosecond laser system based on photonic crystal fiber[M]. Tianjin: Tianjin University, 2016: 73- 77.

[58] Moon S, Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Optics Express, 2006, 14(24): 11575-11584.

[59] CezardN, DobrocA, CanatG, et al. Supercontinuum laser absorption spectroscopy in the mid-infrared range for identification and concentration estimation of a multi-component atmospheric gas mixture[C]. SPIE, 2011, 81820: 81820V.

[60] Washburn B R, Diddams S A, Newbury N R, et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 2004, 29(3): 250-252.

[61] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

[62] Schenkel B, Biegert J, Keller U, et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum[J]. Optics Letters, 2003, 28(20): 1987-1989.

[63] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[64] Holzwarth R, Reichert J, Udem T, et al. Optical frequency metrology and its contribution to the determination of fundamental constants[J]. AIP Conference Proceedings, 2001, 551(1): 58-72.

[65] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 ? via four-photon coupling inglass[J]. Physical Review Letters, 1970, 24(11): 584-588.

[66] Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 1970, 24(11): 592-594.

[67] Leon-Saval S G, Birks T A, Wadsworth W J, et al. . Supercontinuum generation in submicron fiber waveguides[J]. Optics Express, 2004, 12(13): 2864-2869.

[68] Hundertmark H, Kracht D, Wandt D, et al. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm[J]. Optics Express, 2003, 11(24): 3196-3201.

[69] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber[J]. Applied Physics B, 2003, 77(2/3): 269-277.

[70] Apolonski A, Povazay B, Unterhuber A, et al. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. Journal of the Optical Society of America B, 2002, 19(9): 2165-2170.

[71] Coen S. Chau A H L, Leonhardt R, et al. White-light supercontinuum generation with 60-ps pump pulses in a photoric crystal fiber[J]. Optics Letters, 2001, 26(17): 1356-1358.

[72] Husakou A V, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[J]. Physical Review Letters, 2001, 87(20): 203901.

[73] Herrmann J, Griebner U, Zhavoronkov N, et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers[J]. Physical Review Letters, 2002, 88(17): 173901.

[74] Husakou A V, Herrmann J. Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers[J]. Journal of the Optical Society of America B, 2002, 19(9): 2171-2182.

[75] Dudley J M, Provino L, Grossard N, et al. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping[J]. Journal of the Optical Society of America B, 2002, 19(4): 765-771.

[76] Genty G, Lehtonen M, Ludvigsen H, et al. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers[J]. Optics Express, 2002, 10(20): 1083-1098.

[77] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Optics Letters, 2000, 25(1): 25-27.

[78] Domachuk P, Wolchover N A, Cronin-Golomb M, et al. The over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 2008, 16(10): 7161-7168.

[79] Stark S P, Travers J C. Russell P S J. Extreme supercontinuum generation to the deep UV[J]. Optics Letters, 2012, 37(5): 770-772.

[80] Huang L L, Hu M L, Fang X H, et al. Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1968-1971.

[81] Fang X H, Hu M L, Li Y F, et al. The numerical analysis for structure optimization of seven-core photonic crystal talent[J]. Acta Physica Sinica, 2009, 58(4): 2495-2500.

[82] Fang X H, Hu M L, Huang L L, et al. The multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber[J]. Optics Letters, 2012, 37(12): 2292-2294.

[83] Omenetto F G, Taylor A J, Moores M D, et al. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber[J]. Optics Letters, 2001, 26(15): 1158-1160.

[84] Serebryannikov E E, Fedotov A B, Zheltikov A M, et al. Third-harmonic generation by Raman-shifted solitons in a photonic-crystal fiber[J]. Journal of the Optical Society of America B, 2006, 23(9): 1975-1979.

[85] Konorov S O, Fedotov A B, Serebryannikov E E, et al. Phase-matched coherent anti-Stokes Raman scattering in isolated air-guided modes of hollow photonic-crystal fibers[J]. Journal of Raman Spectroscopy, 2005, 36(2): 129-133.

[86] Fedotov A B, Voronin A A, Serebryannikov E E, et al. Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber[J]. Physical Review E, 2007, 75(1): 016614.

[87] Naumov A N, Fedotov A B, Zheltikov A M, et al. Enhanced χ(3) interactions of unamplified femtosecond Cr∶ forsterite laser pulses in photonic-crystal fibers [J]. Journal of the Optical Society of America B, 2002, 19(9): 2183-2190.

[88] Zheltikov A M. Third-harmonic generation with no signal at 3ω[J]. Physical Review A, 2005, 72(4): 043812.

[89] Liu B W, Hu M L, Wang S J, et al. All-photonic-crystal-fiber coherent black-light source[J]. Optics Letters, 2010, 35(23): 3958-3960.

[90] 滕欢, 柴路, 王清月, 等. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波[J]. 物理学报, 2017, 66(4): 044205.

    Teng H, Chai L, Wang Q Y, et al. Optimization of broadband third-harmonic UV generation in highly nonlinear photonic crystal fiber[J]. Acta Physica Sinica, 2017, 66(4): 044205.

赵君, 胡明列, 范锦涛, 刘博文, 宋有建, 柴路, 王清月. 光纤飞秒激光抽运的非线性光学频率变换研究进展[J]. 激光与光电子学进展, 2018, 55(4): 040001. Jun Zhao, Minglie Hu, Jintao Fan, Bowen Liu, Youjian Song, Lu Chai, Qingyue Wang. Research Progress of Nonlinear Frequency Conversion Technology Based on Fiber Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!