激光与光电子学进展, 2014, 51 (12): 120008, 网络出版: 2014-12-02  

靶后鞘层机制加速离子的研究进展

Research Progress of Scheme of Target-Normal Sheath Acceleration Ion
作者单位
上海应用技术学院理学院, 上海 201418
引用该论文

王凤超. 靶后鞘层机制加速离子的研究进展[J]. 激光与光电子学进展, 2014, 51(12): 120008.

Wang Fengchao. Research Progress of Scheme of Target-Normal Sheath Acceleration Ion[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120008.

参考文献

[1] S V Bulanov, T Zh Esirkepov, V S Khoroshkov, et al.. Oncological hadrontherapy with laser ion accelerators[J]. Phys Lett A, 2002, 299(2): 240-247.

[2] M Borghesi, D H Campbell, A Schiavi, et al.. Electric field detection in laser-plasma interaction experiments via the proton imaging technique[J]. Phys Plasmas, 2002, 9(5): 2214-2220.

[3] 李玉同. 快点火激光核聚变和实验室天体物理中的几个前沿问题[J]. 激光与光电子学进展, 2010, 47(9): 093202.

    Li Yutong. Frontier of high-power-laser-based high energy density physics[J]. Laser & Optoelectronics Progress, 2010, 47(9): 093202.

[4] 张宝辉, 徐军, 杨秋红, 等. 基于钛宝石的超快超强激光新进展[J]. 激光与光电子学进展, 2013, 50(4): 040003.

    Zhang Baohui, Xu Jun, Yang Qiuhong, et al.. New progress of ultrafast and ultraintense lasers based on Ti:sapphire[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040003.

[5] 邹德滨, 卓红斌, 邵福球, 等. 薄膜靶整形强激光脉冲的理论分析和数值模拟[J]. 光学学报, 2012, 32(7): 0714001.

    Zou Debin, Zhuo Hongbin, Shao Fuqiu, et al.. Laser-pulse shaping in the interaction of ultra-intense laser pulses with ultra-thin foils[J]. Acta Optica Sinica, 2012, 32(7): 0714001.

[6] 葛绪雷, 滕浩, 郑轶, 等. 飞秒激光啁啾脉冲放大中压缩光栅的等离子体清洗[J]. 中国激光, 2012, 39(4): 0402006.

    Ge Xulei, Teng Hao, Zheng Yi, et al.. Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier[J]. Chinese J Lasers, 2012, 39(4): 0402006.

[7] 王洪建, 肖沙里, 叶雁, 等. 激光等离子体X 射线背光源诊断研究[J]. 中国激光, 2014, 41(3): 0315001.

    Wang Hongjian, Xiao Shali, Ye Yan, et al.. Diagnosis of X-ray backlighter based on laser plasma[J]. Chinese J Lasers, 2014, 41(3): 0315001.

[8] 沈百飞, 张晓梅. 高能量密度下激光粒子加速等研究的最新进展和展望[J]. 激光与光电子学进展, 2010, 47(9): 093201.

    Shen Baifei, Zhang Xiaomei. Latest progress and prospect of laser induced particle acceleration under high energy density conditions[J]. Laser & Optoelectronics Progress, 2010, 47(9): 093201.

[9] 宾建辉, 雷安乐, 余玮. 等离子体初始温度对强激光与等离子体相互作用中的高能质子产生的影响[J]. 中国激光, 2009, 36(6): 1416-1419.

    Bin Jianhui, Lei Anle, Yu Wei. Influence of initial plasma temperature on energetic proton generation from laserplasma interactions[J]. Chinese J Lasers, 2009, 36(6): 1416-1419.

[10] 阿不都热苏力, 帕尔哈提. 激光等离子体相互作用中的自生磁场和超热电子热输运[J]. 中国激光, 2012, 39(s1): s102011.

    A Abudurexiti, P Mejid. Self-generated magnetic field and hot electron energy transport in the interaction of ultraintense laser pulse with plasmas[J]. Chinese J Lasers, 2012, 39(s1): s102011.

[11] 张兴强, 鲁建业. 激光等离子体推进机理的初步分析[J]. 中国激光, 2013, 40(8): 0802008.

    Zhang Xingqiang, Lu Jianye. Preliminary analysis of laser sustained plasma propulsion mechanism[J]. Chinese J Lasers, 2013, 40(8): 0802008.

[12] P A Ni, N Alexander, J J Barnard, et al.. Summary of recent experiments on focusing of target-normal-sheathaccelerated proton beam with a stack of conducting foils[J]. Phys Plasmas, 2014, 21(5): 056701.

[13] M Passoni, C Perego, A Sgattoni, et al.. Advances in target normal sheath acceleration theory[J]. Phys Plasmas, 2013, 20(6): 060701.

[14] Jin-Lu Liu, Min Chen, Jun Zheng, et al.. Three dimensional effects on proton acceleration by intense laser solid target interaction[J]. Phys Plasmas, 2013, 20(6): 063107.

[15] C Perego, D Batani, A Zani, et al.. Target normal sheath acceleration analytical modeling, comparative study and developments[J]. Rev Sci Instrum, 2012, 83(2): 02B502.

[16] Z Lecz, O Boine-Frankenheim, V Kornilov. Target normal sheath acceleration for arbitrary proton layer thickness[J]. Nucl Instrum Methods Phys Res A, 2013, 727: 51-58.

[17] S Sinigardi, G Turchetti, F Rossi, et al.. High quality proton beams from hybrid integrated laser-drivenion acceleration systems[J]. Nucl Instrum Methods Phys Res A, 2014, 740: 99-104.

[18] S P Hatchett, C G Brown, T E Cowan, et al.. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets[J]. Phys Plasmas, 2000, 7(5): 2076-2082.

[19] S C Wilks, A B Langdon, T E Cowan, et al.. Energetic proton generation in ultra-intense laser-solid interactions[J]. Phys Plasmas, 2001, 8(2): 542-549.

[20] Y Sentoku, T E Cowan, A Kemp, et al.. High energy proton acceleration in interaction of short laser pulse with dense plasma target[J]. Phys Plasmas, 2003, 10(5): 2009-2015.

[21] T Zh Esirkepov, S V Bulanov, K Nishihara, et al.. Proposed double-layer target for the generation of high-quality laseraccelerated ion beams[J]. Phys Rev Lett, 2002, 89(17): 175003.

[22] T Morita, T Zh Esirkepov, S V Bulanov, et al.. Tunable high-energy ion source via oblique laser pulse incident on a double-layer target[J]. Phys Rev Lett, 2008, 100(14): 145001.

[23] Fengchao Wang, Baifei Shen, Xiaomei Zhang, et al.. High-energy monoenergetic proton bunch from laser interaction with a complex target[J]. Physics of Plasmas, 2009, 16(9): 093112.

[24] Y J Gu, Q Kong, S Kawata, et al.. Enhancement of proton acceleration field in laser double-layer target interaction[J]. Phys Plasmas, 2013, 20(7): 070703.

[25] S Sinigardi, G Turchetti, P Londrillo, et al.. Transport and energy selection of laser generated protons for postacceleration with a compact linac[J]. Phys Rev ST Accel B.eams, 2013, 16(3): 031301.

[26] S M Lund, R H Cohen, P A Ni. Envelope model for passive magnetic focusing of an intense proton or ion beam propagating through thin foils[J]. Phys Rev ST Accel Beams, 2013, 16(4): 044202.

[27] P A Ni, B G Logan, S M Lund, et al.. Feasibility study of the magnetic beam self-focusing phenomenon in a stack of conducting foils: Application to TNSA proton beams[J]. Laser Part Beams, 2013, 31(1): 81–88.

[28] W P Wang, B F Shen, X M Zhang, et al.. Cascaded target normal sheath acceleration[J]. Phys Plasmas, 2013, 20(11): 113107.

[29] W P Wang, B F Shen, H Zhang, et al.. Effects of nanosecond-scale prepulse on generation of high-energy protons in target normal sheath acceleration[J]. Appl Phys Lett, 2013, 102(22): 224101.

[30] R Snavely, M Key, S Hatchett, et al.. Intense high-energy proton beams from Petawatt-laser irradiation of solids[J]. Phys Rev Lett, 2000, 85(14): 2945-2948.

[31] M Hegelich, S Karsch, G Pretzler, et al.. MeV ion jets from short-pulse-laser interaction with thin foils[J]. Phys Rev Lett, 2002, 89(8): 085002.

[32] H Schwoerer, S Pfotenhauer1, O Jaeckel, et al.. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 2006, 439(7075): 445-448.

[33] B M Hegelich, B J Albright, J Cobble, et al.. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(7075): 441-444.

[34] P A Ni, S M Lund, C McGuffey, et al.. Initial experimental evidence of self-collimation of target-normal-sheathaccelerated proton beam in a stack of conducting foils[J]. Phys Plasmas, 2013, 20(8): 083111.

[35] W P Wang, H Zhang, B Wu, et al.. Generation of low-divergence megaelectronvolt ion beams from thin foil irradiated with an ultrahigh-contrast laser[J]. Appl Phys Lett, 2012, 101(21): 214103.

王凤超. 靶后鞘层机制加速离子的研究进展[J]. 激光与光电子学进展, 2014, 51(12): 120008. Wang Fengchao. Research Progress of Scheme of Target-Normal Sheath Acceleration Ion[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!