Photonics Research, 2017, 5 (4): 04000367, Published Online: Jan. 21, 2019   

Optomechanically induced transparency in a spinning resonator Download: 803次

Author Affiliations
1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Physics, Henan Normal University, Xinxiang 453007, China
4 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
Copy Citation Text

Hao Lü, Yajing Jiang, Yu-Zhu Wang, Hui Jing. Optomechanically induced transparency in a spinning resonator[J]. Photonics Research, 2017, 5(4): 04000367.

References

[1] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 2014, 86: 1391-1452.

[2] M. Metcalfe. Applications of cavity optomechanics. Appl. Phys. Rev., 2014, 1: 031105.

[3] T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, E. S. Polzik. Optical detection of radio waves through a nanomechanical transducer. Nature, 2014, 507: 81-85.

[4] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, J. D. Teufel. Mechanically mediated microwave frequency conversion in the quantum regime. Phys. Rev. Lett., 2016, 116: 043601.

[5] X.-W. Xu, Y. Li, A.-X. Chen, Y.-X. Liu. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Phys. Rev. A, 2016, 93: 023827.

[6] T.-Y. Chen, W.-Z. Zhang, R.-Z. Fang, C.-Z. Hang, L. Zhou. Multi-path photon-phonon converter in optomechanical system at single-quantum level. Opt. Express, 2017, 25: 10779-10790.

[7] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Franais, L. Rousseau. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett., 2006, 97: 133601.

[8] E. Gavartin, P. Verlot, T. J. Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol., 2012, 7: 509-514.

[9] I. S. Grudinin, H. Lee, O. Painter, K. J. Vahala. Phonon laser action in a tunable two-level system. Phys. Rev. Lett., 2010, 104: 083901.

[10] H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, F. Nori. PT-symmetric phonon laser. Phys. Rev. Lett., 2014, 113: 053604.

[11] G. Wang, M. Zhao, Y. Qin, Z. Yin, X. Jiang, M. Xiao. Demonstration of an ultra-low-threshold phonon laser with coupled microtoroid resonators in vacuum. Photon. Res., 2017, 5: 73-76.

[12] A. Nunnenkamp, K. Brkje, S. M. Girvin. Single-photon optomechanics. Phys. Rev. Lett., 2011, 107: 063602.

[13] I. M. Mirza, S. J. van Enk. Single-photon time-dependent spectra in quantum optomechanics. Phys. Rev. A, 2014, 90: 043831.

[14] J.-Q. Liao, C. K. Law. Correlated two-photon scattering in cavity optomechanics. Phys. Rev. A, 2013, 87: 043809.

[15] I. M. Mirza. Strong coupling optical spectra in dipole–dipole interacting optomechanical Tavis–Cummings models. Opt. Lett., 2016, 41: 2422-2425.

[16] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 2010, 330: 1520-1523.

[17] A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472: 69-73.

[18] Z. Shen, C.-H. Dong, Y. Chen, Y.-F. Xiao, F.-W. Sun, G.-C. Guo. Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere. Opt. Lett., 2016, 41: 1249-1252.

[19] X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, T. J. Kippenberg. Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys., 2013, 9: 179-184.

[20] M. Asano, Ş. K. Özdemir, W. Chen, R. Ikuta, L. Yang, N. Imoto, T. Yamamoto. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity. Appl. Phys. Lett., 2016, 108: 181105.

[21] H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, F. Nori. Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep., 2015, 5: 9663.

[22] A. Kronwald, F. Marquardt. Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett., 2013, 111: 133601.

[23] L. Fan, K. Y. Fong, M. Poot, H. X. Tang. Cascaded optical transparency in multimode-cavity optomechanical systems. Nat. Commun., 2015, 6: 5850.

[24] H. Xiong, L.-G. Si, A.-S. Zheng, X. Yang, Y. Wu. Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A, 2012, 86: 013815.

[25] Y. Jiao, H. Lü, J. Qian, Y. Li, H. Jing. Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay. New J. Phys., 2016, 18: 083034.

[26] E. J. Post. Sagnac effect. Rev. Mod. Phys., 1967, 39: 475-493.

[27] W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully. The ring laser gyro. Rev. Mod. Phys., 1985, 57: 61-104.

[28] C. Ciminelli, F. Dell’Olio, C. E. Campanella, M. N. Armenise. Photonic technologies for angular velocity sensing. Adv. Opt. Photon., 2010, 2: 370-404.

[29] L. Ge, R. Sarma, H. Cao. Rotation-induced mode coupling in open wavelength-scale microcavities. Phys. Rev. A, 2014, 90: 013809.

[30] R. Sarma, L. Ge, J. Wiersig, H. Cao. Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett., 2015, 114: 053903.

[31] M. P. J. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 2013, 341: 537-540.

[32] G. Li, T. Zentgraf, S. Zhang. Rotational Doppler effect in nonlinear optics. Nat. Phys., 2016, 12: 736-740.

[33] S. Franke-Arnold, G. Gibson, R. W. Boyd, M. J. Padgett. Rotary photon drag enhanced by a slow-light medium. Science, 2011, 333: 65-67.

[34] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, A. Alù. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science, 2014, 343: 516-519.

[35] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 2016, 10: 657-661.

[36] F. Ruesink, M.-A. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 2016, 7: 13662.

[37] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, O. Painter. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 2017, 13: 465-471.

[38] Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, Y.-F. Xiao. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 2017, 118: 033901.

[39] M. Scheucher, A. Hilico, E. Will, J. Volz, A. Rauschenbeutel. Quantum optical circulator controlled by a single chirally coupled atom. Science, 2016, 354: 1577-1580.

[40] S. Davuluri, Y. V. Rostovtsev. Quantum optical mouse to detect Coriolis force. Europhys. Lett., 2013, 103: 24001.

[41] S. Davuluri, S. Zhu. Controlling optomechanically induced transparency through rotation. Europhys. Lett., 2015, 112: 64002.

[42] H. Xu, D. Mason, L. Jiang, J. G. E. Harris. Topological energy transfer in an optomechanical system with exceptional points. Nature, 2016, 537: 80-83.

[43] H. Jing, Ş. K. Özdemir, H. Lü, F. Nori. High-order exceptional points in optomechanics. Sci. Rep., 2017, 7: 3386.

[44] G. B. Malykin. The Sagnac effect: correct and incorrect explanations. Phys. Usp., 2000, 43: 1229-1252.

[45] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 2017, 13: 94-102.

[46] MaayaniS.CarmonT. (personal communication).

[47] C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, G.-C. Guo. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun., 2015, 6: 6193.

[48] W. M. Zhang, G. Meng. Stability, bifurcation and chaos analyses of a high-speed micro-rotor system with rub-impact. Sens. Actuators A, 2006, 127: 163-178.

[49] R. Kurose, S. Komori. Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech., 1999, 384: 183-206.

[50] D. Sofikitis, L. Bougas, G. E. Katsoprinakis, A. K. Spiliotis, B. Loppinet, T. P. Rakitzis. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry. Nature, 2014, 514: 76-79.

Hao Lü, Yajing Jiang, Yu-Zhu Wang, Hui Jing. Optomechanically induced transparency in a spinning resonator[J]. Photonics Research, 2017, 5(4): 04000367.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!