Photonics Research, 2020, 8 (10): 10001605, Published Online: Sep. 23, 2020  

Room temperature synthesis of stable silica-coated CsPbBr3 quantum dots for amplified spontaneous emission Download: 781次

Author Affiliations
1 Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
2 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
4 e-mail: dujuan@mail.siom.ac.cn
5 e-mail: zangzg@cqu.edu.cn
Copy Citation Text

Qionghua Mo, Tongchao Shi, Wensi Cai, Shuangyi Zhao, Dongdong Yan, Juan Du, Zhigang Zang. Room temperature synthesis of stable silica-coated CsPbBr3 quantum dots for amplified spontaneous emission[J]. Photonics Research, 2020, 8(10): 10001605.

References

[1] X. Li, Y. Wang, H. Sun, H. Zeng. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater., 2017, 29: 1701185.

[2] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater., 2016, 26: 2435-2445.

[3] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15: 3692-3696.

[4] J. Liu, J. Zhou, H. Lin, Y. Yu, S. Zuo, B. Li. Bright luminous and stable CsPbBr3@PS microspheres prepared via facile anti-solvent method using CTAB as double modifier. Chem. Eur. J., 2020, 26: 10528-10533.

[5] Y.-H. Suh, T. Kim, J. W. Choi, C.-L. Lee, J. Park. High-performance CsPbX3 perovskite quantum-dot light-emitting devices via solid-state ligand exchange. ACS Appl. Nano Mater., 2018, 1: 488-496.

[6] J. H. Park, A. Y. Lee, J. C. Yu, Y. S. Nam, Y. Choi, J. Park, M. H. Song. Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes. ACS Appl. Mater. Interfaces, 2019, 11: 8428-8435.

[7] X. Yang, H. Yang, X. Hu, W. Li, Z. Fang, K. Zhang, R. Huang, J. Li, Z. Yang, Y. Song. Low-temperature interfacial engineering for flexible CsPbI2Br perovskite solar cells with high performance beyond 15%. J. Mater. Chem. A, 2020, 8: 5308-5314.

[8] M. B. Faheem, B. Khan, C. Feng, M. U. Farooq, F. Raziq, Y. Xiao, Y. Li. All-inorganic perovskite solar cells: energetics, key challenges, and strategies toward commercialization. ACS Energy Lett., 2019, 5: 290-320.

[9] P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, J. S. Lee. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun., 2016, 52: 2067-2070.

[10] L. Lv, Y. Xu, H. Fang, W. Luo, F. Xu, L. Liu, B. Wang, X. Zhang, D. Yang, W. Hu, A. Dong. Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale, 2016, 8: 13589-13596.

[11] H. Zhang, M. Jin, X. Liu, Y. Zhang, Y. Yu, X. Liang, W. Xiang, T. Wang. The preparation and up-conversion properties of full spectrum CsPbX3 (X = Cl, Br, I) quantum dot glasses. Nanoscale, 2019, 11: 18009-18014.

[12] X. Li, W. Liu, Y. Song, H. Long, K. Wang, B. Wang, P. Lu. Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy, 2020, 68: 104334.

[13] Y. Liu, Z. Gao, W. Zhang, X. Sun, Z. Wang, X. Wang, B. Xu, X. Meng. Stimulated emission from CsPbBr3 quantum dot nanoglass. Opt. Mater. Express, 2019, 9: 3390-3405.

[14] Y. Yang, Q. Li, Y. Liu, R. Cong, Y. Sun, J. Hou, M. Ge, J. Shi, F. Zhang, G. Zhao, N. Zhang, Y. Fang, N. Dai. Magenta-emitting cesium lead halide nanocrystals encapsulated in dimethicone for white light-emitting diodes. ACS Appl. Nano Mater., 2020, 3: 4886-4892.

[15] J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, T. Pullerits. Size- and wavelength-dependent two-photon absorption cross section of CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett., 2017, 8: 2316-2321.

[16] M. L. De Giorgi, F. Krieg, M. V. Kovalenko, M. Anni. Amplified spontaneous emission threshold reduction and operational stability improvement in CsPbBr3 nanocrystals films by hydrophobic functionalization of the substrate. Sci. Rep., 2019, 9: 17964.

[17] X. Wu, Y. Li, W. Li, L. Wu, B. Fu, W. Wang, G. Liu, D. Zhang, J. Zhao, P. Chen. Enhancing optically pumped organic-inorganic hybrid perovskite amplified spontaneous emission via compound surface plasmon resonance. Crystals, 2018, 8: 124.

[18] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of cesium lead halide perovskites. Nat. Commun., 2015, 6: 8056.

[19] J. Pan, S. P. Sarmah, B. Murali, I. Dursun, W. Peng, M. R. Parida, J. Liu, L. Sinatra, N. Alyami, C. Zhao, E. Alarousu, T. K. Ng, B. S. Ooi, O. M. Bakr, O. F. Mohammed. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett., 2015, 6: 5027-5033.

[20] L. Zhao, Y. Chen, X. Yu, X. Xing, J. Chen, J. Song, J. Qu. Low-threshold stimulated emission in perovskite quantum dots: single-exciton optical gain induced by surface plasmon polaritons at room temperature. J. Mater. Chem. C, 2020, 8: 5847-5855.

[21] Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, H. Sun. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett., 2016, 16: 448-453.

[22] Y. Wang, M. Zhi, Y. Q. Chang, J. P. Zhang, Y. Chan. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett., 2018, 18: 4976-4984.

[23] L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, H. Zhong. Ultralow-threshold and color-tunable continuous-wave lasing at room temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett., 2019, 10: 3248-3253.

[24] X. Tang, Y. Bian, Z. Liu, J. Du, M. Li, Z. Hu, J. Yang, W. Chen, L. Sun. Room-temperature up-conversion random lasing from CsPbBr3 quantum dots with TiO2 nanotubes. Opt. Lett., 2019, 44: 4706-4709.

[25] A. Mikosch, S. Ciftci, G. Tainter, R. Shivanna, B. Haehnle, F. Deschler, A. J. C. Kuehne. Laser emission from self-assembled colloidal crystals of conjugated polymer particles in a metal-halide perovskite matrix. Chem. Mater., 2019, 31: 2590-2596.

[26] S. Yuan, D. Chen, X. Li, J. Zhong, X. Xu. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces, 2018, 10: 18918-18926.

[27] H. Zhang, L. Yuan, Y. Chen, Y. Zhang, Y. Yu, X. Liang, W. Xiang, T. Wang. Amplified spontaneous emission and random lasing using CsPbBr3 quantum dot glass through controlling crystallization. Chem. Commun., 2020, 56: 2853-2856.

[28] S. Wang, J. Yu, M. Zhang, D. Chen, C. Li, R. Chen, G. Jia, A. L. Rogach, X. Yang. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy. Nano Lett., 2019, 19: 6315-6322.

[29] Z.-J. Li, E. Hofman, J. Li, A. H. Davis, C.-H. Tung, L.-Z. Wu, W. Zheng. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater., 2018, 28: 1704288.

[30] X. Liu, X. Zhang, L. Li, J. Xu, S. Yu, X. Gong, J. Zhang, H. Yin. Stable luminescence of CsPbBr3/nCdS core/shell perovskite quantum dots with Al self-passivation layer modification. ACS Appl. Mater. Interfaces, 2019, 11: 40923-40931.

[31] H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai, R. S. Liu. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., 2016, 55: 7924-7929.

[32] T. Xuan, X. Yang, S. Lou, J. Huang, Y. Liu, J. Yu, H. Li, K. L. Wong, C. Wang, J. Wang. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale, 2017, 9: 15286-15290.

[33] J. Zhu, Z. Xie, X. Sun, S. Zhang, G. Pan, Y. Zhu, B. Dong, X. Bai, H. Zhang, H. Song. Highly efficient and stable inorganic perovskite quantum dots by embedding into a polymer matrix. Chem. Nano Mater., 2018, 5: 346-351.

[34] D. Yan, T. Shi, Z. Zang, T. Zhou, Z. Liu, Z. Zhang, J. Du, Y. Leng, X. Tang. Ultrastable CsPbBr3 perovskite quantum dots and their enhanced amplified spontaneous emission by surface ligand modification. Small, 2019, 15: 1901173.

[35] W. J. Mir, Y. Mahor, A. Lohar, M. Jagadeeswararao, S. Das, S. Mahamuni, A. Nag. Postsynthesis doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) perovskite nanocrystals for down-conversion emission. Chem. Mater., 2018, 30: 8170-8178.

[36] S. Lou, Z. Zhou, T. Xuan, H. Li, J. Jiao, H. Zhang, R. Gautier, J. Wang. Chemical transformation of lead halide perovskite into insoluble, less cytotoxic, and brightly luminescent CsPbBr3/CsPb2Br5 composite nanocrystals for cell imaging. ACS Appl. Mater. Interfaces, 2019, 11: 24241-24246.

[37] S. Huang, Z. Li, L. Kong, N. Zhu, A. Shan, L. Li. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in ‘waterless’ toluene. J. Am. Chem. Soc., 2016, 138: 5749-5752.

[38] Y. Wei, K. Li, Z. Cheng, M. Liu, H. Xiao, P. Dang, S. Liang, Z. Wu, H. Lian, J. Lin. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: a novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability. Adv. Mater., 2019, 31: 1807592.

[39] B. Wang, C. Zhang, S. Huang, Z. Li, L. Kong, L. Jin, J. Wang, K. Wu, L. Li. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Appl. Mater. Interfaces., 2018, 10: 23303-23310.

[40] Y. Chen, M. Yu, S. Ye, J. Song, J. Qu. All-inorganic CsPbBr3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanolasers. Nanoscale, 2018, 10: 6704-6711.

[41] X. Tang, J. Yang, S. Li, Z. Liu, Z. Hu, J. Hao, J. Du, Y. Leng, H. Qin, X. Lin, Y. Lin, Y. Tian, M. Zhou, Q. Xiong. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties. Adv. Sci., 2019, 6: 1900412.

[42] Q. Zhong, M. Cao, H. Hu, D. Yang, M. Chen, P. Li, L. Wu, Q. Zhang. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano, 2018, 12: 8579-8587.

[43] B. Qiao, P. Song, J. Cao, S. Zhao, Z. Shen, G. Di, Z. Liang, Z. Xu, D. Song, X. Xu. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals. Nanotechnology, 2017, 28: 445602.

[44] S. Fang, G. Li, H. Li, Y. Lu, L. Li. Organic titanates: a model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives. Chem. Commun., 2018, 54: 3863-3866.

[45] C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, W. W. Yu. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater., 2016, 28: 10088-10094.

[46] Z. Liu, Y. Zhang, Y. Fan, Z. Chen, Z. Tang, J. Zhao, Y. Lv, J. Lin, X. Guo, J. Zhang, X. Liu. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Appl. Mater. Interfaces, 2018, 10: 13053-13061.

[47] W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, M. Zhou. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small, 2017, 13: 1604085.

[48] N. Yarita, H. Tahara, T. Ihara, T. Kawawaki, R. Sato, M. Saruyama, T. Teranishi, Y. Kanemitsu. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett., 2017, 8: 1413-1418.

[49] Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, G. Hodes. Low-temperature solution-grown CsPbBr3 single crystals and their characterization. Cryst. Growth Des., 2016, 16: 5717-5725.

[50] X. Tang, Z. Hu, W. Yuan, W. Hu, H. Shao, D. Han, J. Zheng, J. Hao, Z. Zang, J. Du, Y. Leng, L. Fang, M. Zhou. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater., 2017, 5: 1600788.

[51] S. Liu, X. Fang, Y. Wang, X. Zhang. Two-photon pumped amplified spontaneous emission based on all-inorganic perovskite nanocrystals embedded with gold nanorods. Opt. Mater., 2018, 81: 55-58.

Qionghua Mo, Tongchao Shi, Wensi Cai, Shuangyi Zhao, Dongdong Yan, Juan Du, Zhigang Zang. Room temperature synthesis of stable silica-coated CsPbBr3 quantum dots for amplified spontaneous emission[J]. Photonics Research, 2020, 8(10): 10001605.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!