Frontiers of Optoelectronics, 2015, 8 (3): 289, 网络出版: 2016-01-06  

Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes

Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes
作者单位
Condensed Matter Physics Research Center, Department of Physics, Jadavpur University, Kolkata 700032, India
引用该论文

Sujata CHAKRABORTY, Nabin Baran MANIK. Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes[J]. Frontiers of Optoelectronics, 2015, 8(3): 289.

Sujata CHAKRABORTY, Nabin Baran MANIK. Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes[J]. Frontiers of Optoelectronics, 2015, 8(3): 289.

参考文献

[1] Gr tzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344

[2] Hagberg D P, Marinado T, Karlsson K M, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A, Sun L. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. Journal of Organic Chemistry, 2007, 72(25): 9550–9556

[3] Haldar A, Maity S, Manik N B. Electrical and photovoltaic characterisations of methyl red dye doped solid-state photoelectrochemical cell. Ionics, 2009, 15(1): 79–83

[4] Burke D J, Lipomi D J. Green chemistry for organic solar cells. Energy & Environmental Science, 2013, 6(7): 2053–2066

[5] Hardin B E, Snaith H J, McGehee M D. The renaissance of dyesensitized solar cells. Nature Photonics, 2012, 6(3): 162–169 6. Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6 (3): 153–161

[6] Islam M R, Maity S, Haldar A, Manik N B, Basu A N. Photocurrent growth and decay behaviour of crystal violet dye-based photoelectrochemical cell in photovoltaic mode. Ionics, 2012, 18(1–2): 209– 214

[7] Singh P K, Jadhav N A, Mishra S K, Singh U P, Bhattacharya B. Application of ionic liquid doped solid polymer electrolyte. Ionics, 2010, 16(7): 645–648

[8] Fredin K, Nissfolk J, Boschloo G, Hagfeldt A. The influence of cations on charge accumulation in dye sensitized solar cells. Journal of Electroanalytical Chemistry, 2007, 609(2): 55–60

[9] Shuttle C G, Treat N D, Douglas J D, Fréchet J M J, Chabinyc M L. Deep energetic trap states in organic photovoltaic devices. Advanced Energy Materials, 2012, 2(1): 111–119

[10] Walker A B, Peter L M, Martínez D, Lobato K. Transient photocurrents in dye-sensitized nanocrystalline solar cells. CHIMIA International Journal for Chemistry, 2007, 61(12): 792–795

[11] Li C, Duan L, Li H, Qiu Y. Universal trap effect in carrier transport of disordered organic semiconductors: transition from shallow trapping to deep trapping. Journal of Physical Chemistry C, 2014, 118(20): 10651–10660

[12] Montero J M, Bisquert J. Trap origin of field-dependent mobility of the carrier transport in organic layers. Solid-State Electronics, 2011, 55(1): 1–4

[13] Carr J A, Chaudhary S. On the identification of deeper defect levels in organic photovoltaic devices. Journal of Applied Physics, 2013, 114(6): 064509

[14] Mandoc M M, Kooistra F B, Hummelen J C, de Boer B, Blom P W M. Effect of traps on the performance of bulk heterojunction organic solar cells. Applied Physics Letters, 2007, 91(26): 263505

[15] Dey S K, Islam M R, Manik N B, Basu A N. Study on the effect of trap levels on steady-state dark I – V characteristics in Safranine-Tbased solid-state thin film photoelectrochemical cell. Journal of Materials Science Materials in Electronics, 2002, 13(5): 249–252

[16] IslamMR, Saha S, Manik N B, Basu A N. Transient current study in Safranine-T dye based organic photo-electrochemical cell using exponentially distributed trap assisted charge transport model. Indian Journal of Physics, 2012, 86(12): 1101–1106

[17] Chen J, Yan Y, Lin K. Effects of carbon nanotubes on dye-sensitized solar cells. Journal of the Chilean Chemical Society, 2010, 57(5B): 1180–1184

[18] Hosni M, Kusumawati Y, Farhat S, Jouini N, Pauporté T. Effects of oxide nanoparticle size and shape on electronic structure, charge transport and recombination in dye-sensitized solar cell photoelectrodes. Journal of Physical Chemistry C, 2014, 118 (30): 16791– 16798

[19] Ausman K D, Piner R, Lourie O, Ruoff R S. Organic solvent dispersions of single-walled carbon nanotubes: towards solutions of pristine nanotubes. Journal of Physical Chemistry B, 2000, 104 (38): 8911–8915

[20] Lee K M, Hu C W, Chen H W, Ho K C. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Materials and Solar Cells, 2008, 92 (12): 1628–1633

[21] Somani S P, Somani P R, Umeno M. Carbon nanotube incorporation: a new route to improve the performance of organic-inorganic heterojunction solar cells. Diamond and Related Materials, 2008, 17 (4–5): 585–588

[22] Chakraborty S, Manik N B. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells. Journal of Semiconductors, 2014, 35 (12): 124004

[23] Maity S, Haldar A, Manik N B. Effect of plasticizer on Safranine-Tdye- based solid-state photo electrochemical cell. Ionics, 2008, 14 (6): 549–554

[24] Alam A, Sachar S, Puri N, Saxena R K. Interactions of polydispersed single-walled carbon nanotubes with T cells resulting in downregulation of allogeneic CTL responses in vitro and in vivo. Nanotoxicology, 2013, 7(8): 1351–1360

[25] Haldar A, Maity S, Manik N B. Effect of back electrode on photovoltaic properties of crystal-violet-dye-doped solid-state thin film. Ionics, 2008, 14(5): 427–432

[26] Mahmoud M A, Poncheri A, Badr Y, Abd El Wahed M G. Photocatalytic degradation of methyl red dye: research letter. South African Journal of Science, 2009, 105(7–8): 299–303

[27] Buitrón G, Quezada M, Moreno G. Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter. Bioresource Technology, 2004, 92(2): 143–149

[28] Yang J, Shen J. Effects of discrete trap levels on organic light emitting diodes. Journal of Applied Physics, 1999, 85(5): 2699– 2705

[29] Shen J, Yang J. Physical mechanisms in double-carrier trap-charge limited transport processes in organic electroluminescent devices: A numerical study. Journal of Applied Physics, 1998, 83(12): 7706– 7714

[30] Mark P, Helfrich W. Space-charge-limited currents in organic crystals. Journal of Applied Physics, 1962, 33(1): 205–215

Sujata CHAKRABORTY, Nabin Baran MANIK. Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes[J]. Frontiers of Optoelectronics, 2015, 8(3): 289. Sujata CHAKRABORTY, Nabin Baran MANIK. Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes[J]. Frontiers of Optoelectronics, 2015, 8(3): 289.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!